Abstract

Due to the exhaustion of fossil fuels and environmental degradation, biodiesel has attracted much attention as a new energy source. Currently, microwave reactors are used extensively for producing biodiesel. However, nonuniform heating of producing biodiesel in microwave reactors is a major problem. In order to solve the problem, a microwave reactor with an interlayer which can obviously improve the uniformity of microwave heating was designed. In this work, the heating efficiency and heating uniformity of the reactor were discussed from two aspects of waveguide position and interlayer thickness by means of multi-physical coupling calculation. According to the calculation results, the optimization model of a microwave reactor with an interlayer was obtained. Then, based on the above optimization model of a microwave reactor with an interlayer, a stirrer that can improve the heat transfer of the fluid material was introduced. The Maxwell equation, heat transfer equation, and flow equation were coupled by the multi-physical field simulation method to explore the influence of different factors of the stirrer on power consumption and heating uniformity. Through response surface analysis, it was found that the primary and secondary order of stirring factors affecting microwave heating uniformity was stirring speed > impeller diameter > bottom clearance, and there was an interaction between different factors. From the two aspects of stirring power consumption and heating uniformity, the best stirring effect was obtained.

References

1.
Arpia
,
A. A.
,
Chen
,
W.-H.
,
Lam
,
S. S.
,
Rousset
,
P.
, and
de Luna
,
M. D. G.
,
2021
, “
Sustainable Biofuel and Bioenergy Production From Biomass Waste Residues Using Microwave-Assisted Heating: A Comprehensive Review
,”
Chem. Eng. J.
,
403
, p.
126233
.
2.
Chen
,
K. S.
,
Lin
,
Y. C.
,
Hsu
,
K. H.
, and
Wang
,
H. K.
,
2012
, “
Improving Biodiesel Yields From Waste Cooking Oil by Using Sodium Methoxide and a Microwave Heating System
,”
Energy
,
38
(
1
), pp.
151
156
.
3.
Motasemi
,
F.
, and
Ani
,
F. N.
,
2012
, “
A Review on Microwave-Assisted Production of Biodiesel
,”
Renew. Sustain. Energy Rev.
,
16
(
7
), pp.
4719
4733
.
4.
Khedri
,
B.
,
Mostafaei
,
M.
, and
Ardebili
,
S. M. S.
,
2019
, “
A Review on Microwave-Assisted Biodiesel Production
,”
Energy Sources Part A-Recovery Util. Environ. Eff.
,
41
(
19
), pp.
2377
2395
.
5.
Nayak
,
S. N.
,
Bhasin
,
C. P.
, and
Nayak
,
M. G.
,
2019
, “
A Review on Microwave-Assisted Transesterification Processes Using Various Catalytic and Non-Catalytic Systems
,”
Renew. Energy
,
143
, pp.
1366
1387
.
6.
Sun
,
J.
,
Wang
,
W. L.
, and
Yue
,
Q. Y.
,
2016
, “
Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies
,”
Materials
,
9
(
4
), p.
25
.
7.
Vasudev
,
H.
,
Singh
,
G.
,
Bansal
,
A.
,
Vardhan
,
S.
, and
Thakur
,
L.
,
2019
, “
Microwave Heating and Its Applications in Surface Engineering: A Review
,”
Mater. Res. Express
,
6
(
10
), p.
20
.
8.
Yong
,
P. J.
,
Cheolhwan
,
J.
,
Jae-Kon
,
K.
, and
Cheon-Gyu
,
P.
2017
, “
A Review of Microwave-Assisted Technology for Biodiesel Production
,”
Trans. Korean Hydrogen New Energy Soc.
,
28
(
5
), pp.
584
599
.
9.
Barham
,
J. P.
,
Koyama
,
E.
,
Norikane
,
Y.
,
Ohneda
,
N.
, and
Yoshimura
,
T.
,
2019
, “
Microwave Flow: A Perspective on Reactor and Microwave Configurations and the Emergence of Tunable Single-Mode Heating Toward Large-Scale Applications
,”
Chem. Rec.
,
19
(
1
), pp.
188
203
.
10.
Vadivambal
,
R.
, and
Jayas
,
D. S.
,
2008
, “
Non-Uniform Temperature Distribution During Microwave Heating of Food Materials—A Review
,”
Food Bioprocess Technol.
,
3
(
2
), pp.
161
171
.
11.
Horikoshi
,
S.
,
Osawa
,
A.
,
Sakamoto
,
S.
, and
Serpone
,
N.
,
2013
, “
Control of Microwave-Generated Hot Spots. Part V. Mechanisms of Hot-Spot Generation and Aggregation of Catalyst in a Microwave-Assisted Reaction in Toluene Catalyzed by Pd-Loaded AC Particulates
,”
Appl. Catal. A Gen.
,
460
, pp.
52
60
.
12.
Zhong
,
R.
,
Yao
,
B.
,
Xiang
,
T.
, and
Zheng
,
Q.
,
2017
, “
Influence of Ridge Groove Structure of the Inner Walls on Heating Efficiency and Uniformity of Microwave Reactor
,”
Food Mach.
,
33
(
4
), pp.
81
85
.
13.
Cao
,
X.
,
Yao
,
B.
,
Zheng
,
Q.
,
Yang
,
J.
,
Xiang
,
T.
, and
Zhong
,
R.
,
2016
, “
Influence of the Cylindrical Inner Wall for Concave Cambered Surface to Microwave Heating Efficiency and Uniformity
,”
Mod. Manuf. Eng.
, (
9
), p.
13
.
14.
Geedipalli
,
S. S. R.
,
Rakesh
,
V.
, and
Datta
,
A. K.
,
2007
, “
Modeling the Heating Uniformity Contributed by a Rotating Turntable in Microwave Ovens
,”
J. Food Eng.
,
82
(
3
), pp.
359
368
.
15.
Ye
,
J.
,
Lan
,
J.
,
Xia
,
Y.
,
Yang
,
Y.
,
Zhu
,
H.
, and
Huang
,
K.
,
2019
, “
An Approach for Simulating the Microwave Heating Process With a Slow-Rotating Sample and a Fast-Rotating Mode Stirrer
,”
Int. J. Heat Mass Transfer
,
140
, pp.
440
452
.
16.
Peiter
,
A. S.
,
Lins
,
P. V. S.
,
Meili
,
L.
,
Soletti
,
J. I.
,
Carvalho
,
S. H. V.
,
Pimentel
,
W. R. O.
, and
Meneghetti
,
S. M. P.
,
2020
, “
Stirring and Mixing in Ethylic Biodiesel Production
,”
J. King Saud Univ. Sci.
,
32
(
1
), pp.
54
59
.
17.
Louhasakul
,
Y.
,
Cheirsilp
,
B.
,
Maneerat
,
S.
, and
Prasertsan
,
P.
,
2018
, “
Direct Transesterification of Oleaginous Yeast Lipids Into Biodiesel: Development of Vigorously Stirred Tank Reactor and Process Optimization
,”
Biochem. Eng. J.
,
137
, pp.
232
238
.
18.
Hoseinzadeh
,
S.
, and
Heyns
,
P. S.
,
2020
, “
Thermo-Structural Fatigue and Lifetime Analysis of a Heat Exchanger as a Feedwater Heater in Power Plant
,”
Eng. Fail. Anal.
,
113
, p.
13
.
19.
Jordaan
,
H.
,
Stephan Heyns
,
P.
, and
Hoseinzadeh
,
S.
,
2021
, “
Numerical Development of a Coupled One-Dimensional/Three-Dimensional Computational Fluid Dynamics Method for Thermal Analysis With Flow Maldistribution
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
).
20.
Hosseini
,
S.
,
Patel
,
D.
,
Ein-Mozaffari
,
F.
, and
Mehrvar
,
M.
,
2010
, “
Study of Solid–Liquid Mixing in Agitated Tanks Through Electrical Resistance Tomography
,”
Chem. Eng. Sci.
,
65
(
4
), pp.
1374
1384
.
21.
Hosseini
,
S.
,
Patel
,
D.
,
Ein-Mozaffari
,
F.
, and
Mehrvar
,
M.
,
2010
, “
Study of Solid-Liquid Mixing in Agitated Tanks Through Computational Fluid Dynamics Modeling
,”
Ind. Eng. Chem. Res.
,
49
(
9
), pp.
4426
4435
.
22.
Zhu
,
H.
,
Ye
,
J.
,
Gulati
,
T.
,
Yang
,
Y.
,
Liao
,
Y.
,
Yang
,
Y.
, and
Huang
,
K.
,
2017
, “
Dynamic Analysis of Continuous-Flow Microwave Reactor With a Screw Propeller
,”
Appl. Therm. Eng.
,
123
, pp.
1456
1461
.
23.
Hong
,
Y. D.
,
Lin
,
B. Q.
,
Li
,
H.
,
Dai
,
H. M.
,
Zhu
,
C. J.
, and
Yao
,
H.
,
2016
, “
Three-Dimensional Simulation of Microwave Heating Coal Sample With Varying Parameters
,”
Appl. Therm. Eng.
,
93
, pp.
1145
1154
.
24.
Zhou
,
P.
,
Yang
,
X.
,
Huang
,
K.
, and
Jia
,
G.
,
2015
, “
Microwave-Assisted Continuous-Flow Reactor Based on a Ridged Waveguide
,”
Chem. Eng. Technol.
,
38
(
8
), pp.
1334
1339
.
25.
Goldblith
,
S. A.
, and
Wang
,
D. I.
,
1967
, “
Effect of Microwaves on Escherichia coli and Bacillus subtilis
,”
Appl. Microbiol.
,
15
(
6
), pp.
1371
1375
.
26.
Huang
,
K. M.
, and
Liao
,
Y. H.
,
2015
, “
Transient Power Loss Density of Electromagnetic Pulse in Debye Media
,”
IEEE Trans. Microwave Theory Tech.
,
63
(
1
), pp.
135
140
.
27.
Pandit
,
R. B.
, and
Prasad
,
S.
,
2003
, “
Finite Element Analysis of Microwave Heating of Potato-Transient Temperature Profiles
,”
J. Food Eng.
,
60
(
2
), pp.
193
202
.
28.
Pitchai
,
K.
,
Birla
,
S. L.
,
Subbiah
,
J.
,
Jones
,
D.
, and
Thippareddi
,
H.
,
2012
, “
Coupled Electromagnetic and Heat Transfer Model for Microwave Heating in Domestic Ovens
,”
J. Food Eng.
,
112
(
1–2
), pp.
100
111
.
29.
Salomatov
,
V. V.
, and
Salomatov
,
V. V.
,
2020
, “
Computational Modeling of Turbulent Flows
,”
J. Eng. Thermophys.
,
29
(
1
), pp.
156
169
.
30.
Salvi
,
D.
,
Boldor
,
D.
,
Ortego
,
J.
,
Aita
,
G. M.
, and
Sabliov
,
C. M.
,
2010
, “
Numerical Modeling of Continuous Flow Microwave Heating: A Critical Comparison of COMSOL and ANSYS
,”
J. Microwave Power Electromagn. Energy
,
44
(
4
), pp.
187
197
.
31.
Liu
,
S. X.
,
Fukuoka
,
M.
, and
Sakai
,
N.
,
2013
, “
A Finite Element Model for Simulating Temperature Distributions in Rotating Food During Microwave Heating
,”
J. Food Eng.
,
115
(
1
), pp.
49
62
.
32.
He
,
J. L.
,
Yang
,
Y.
,
Zhu
,
H. C.
,
Li
,
K.
,
Yao
,
W.
, and
Huang
,
K. M.
,
2020
, “
Microwave Heating Based on Two Rotary Waveguides to Improve Efficiency and Uniformity by Gradient Descent Method
,”
Appl. Therm. Eng.
,
178
, p.
12
.
33.
Meng
,
Q.
,
Lan
,
J. Q.
,
Hong
,
T.
, and
Zhu
,
H. C.
,
2018
, “
Effect of the Rotating Metal Patch on Microwave Heating Uniformity
,”
J. Microwave Power Electromagn. Energy
,
52
(
2
), pp.
94
108
.
34.
Tang
,
Z. M.
,
Hong
,
T.
,
Liao
,
Y. H.
,
Chen
,
F. Y.
,
Ye
,
J. H.
,
Zhu
,
H. C.
, and
Huang
,
K. M.
,
2018
, “
Frequency-Selected Method to Improve Microwave Heating Performance
,”
Appl. Therm. Eng.
,
131
, pp.
642
648
.
You do not currently have access to this content.