Abstract

With the increasing power requirements of electronic devices, high heat flux will cause serious damage to the devices. Based on the basic theory of micro-nano heat transfer, the series and topological microchannel heat sink models are established. The flow field characteristics and temperature distribution in the heat sink are analyzed by numerical calculation. The effects of channel structure on temperature, pressure drop, the Nusselt number, and enhanced heat transfer factor are compared, and the micro-mechanism of heat transfer enhancement in microchannels is clarified. It is found that the Nusselt number of the flow field can be significantly increased by adding the triangular groove in the microchannel, and the enhanced heat transfer factor in the channel can be greatly improved by the topological structure. Further analysis of the factors such as angle α, diameter ratios γ, and topological structures of the triangular groove shows that when α = 70 deg, the Nusselt number of the flow field is 3.1 times of that of the straight channel and the enhanced heat transfer factor is 2.7 times of that of it; compared with the straight channel, the comprehensive heat transfer performance of the microchannel with γ = 1/2 is improved by 31%; when using variable cross-sectional topology microchannel with triangle structure (T.Tr.N.) topology, the convective heat transfer of the microchannel is 2.6 times of that of the straight channel and the comprehensive heat transfer performance is increased by 5.9 times.

References

1.
Xia
,
G. D.
,
Xu
,
Z. B.
, and
Qi
,
J. Z.
,
2010
, “
Flow and Heat Transfer Characteristics in a Periodical Changeable Cross-Section Micro-Channel Heat Sink
,”
Chin. J. Aeronaut.
,
25
(
1
), pp.
6
10
.
2.
Chai
,
L.
,
Xia
,
G. D.
,
Zhou
,
M. Z.
, and
Li
,
J.
,
2011
, “
Numerical Simulation of Fluid Flow and Heat Transfer in a Microchannel Heat Sink With Offset Fan-Shaped Reentrant Cavities in Sidewall
,”
Int. J. Heat Mass Transfer
,
38
(
5
), pp.
577
584
.
3.
Liu
,
J.
,
2001
,
Micro/Nano Scale Heat Transfer
,
Science Press
,
Beijing
.
4.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
,
Higher Education Press
,
Beijing
.
5.
Kewalramani
,
G. V.
,
Hedau
,
G.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2019
, “
Study of Laminar Single Phase Frictional Factor and Nusselt Number in In-Line Micro Pin-Fin Heat Sink for Electronic Cooling Applications
,”
Int. J. Heat Mass Transfer
,
138
, pp.
796
808
.
6.
Zhou
,
M. Z.
,
Xia
,
G. D.
,
Chai
,
L.
,
Zhou
,
L. J.
, and
Gao
,
N.
,
2012
, “
Flow and Heat Transfer Characteristics of Drop-Shaped Micro Pin-Fin Heat Sinks With Cross Flow
,”
Chin. J. Aeronaut.
,
27
(
12
), pp.
2681
2686
.
7.
Zhang
,
H. N.
,
Shao
,
S. Q.
,
Xu
,
H. B.
, and
Tian
,
C. Q.
,
2013
, “
Heat Transfer and Flow Features of Al2O3–Water Nanofluids Flowing Through Circular Microchannel-Experimental Results and Correlations
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
86
92
.
8.
Wong
,
K. C.
, and
Lee
,
J. H.
,
2015
, “
Investigation of Thermal Performance of Microchannel Heat Sink With Triangular Ribs in the Transverse Microchambers
,”
Int. Commun. Heat Mass Transfer
,
65
, pp.
103
110
.
9.
Datta
,
A.
,
Sanyal
,
D.
, and
Das
,
A. K.
,
2016
, “
Numerical Investigation of Heat Transfer in Microchannel Using Inclined Longitudinal Vortex Generator
,”
Appl. Therm. Eng.
,
108
, pp.
1008
1019
.
10.
Bayrak
,
E.
,
Olcay
,
A. B.
, and
Serincan
,
M. F.
,
2018
, “
Numerical Investigation of the Effects of Geometric Structure of Microchannel Heat Sink on Flow Characteristics and Heat Transfer Performance
,”
Int. J. Therm. Sci.
,
135
, pp.
589
600
.
11.
Lee
,
J. B.
,
Park
,
S. G.
, and
Sung
,
H. J.
,
2018
, “
Heat Transfer Enhancement by Asymmetrically Clamped Flexible Flags in a Channel Flow
,”
Int. J. Heat Mass Transfer
,
116
, pp.
1003
1015
.
12.
Shi
,
X. J.
,
Li
,
S.
,
Wei
,
Y.
, and
Gao
,
J.
,
2018
, “
Multi-Objective Optimization on the Geometrical Parameters of a Nanofluid-Cooled Rectangular Microchannel Heat Sink
,”
J. Xi’an Jiaotong Univ.
,
52
(
5
), pp.
56
61
and 132.
13.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Dev. Lett.
,
2
(
5
), pp.
126
129
.
14.
Xu
,
J. L.
,
Song
,
Y. X.
,
Zhang
,
W.
,
Zhang
,
H.
, and
Gan
,
Y. H.
,
2008
, “
Numerical Simulations of Interrupted and Conventional Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5906
5917
.
15.
Xia
,
G. D.
,
Chai
,
L.
,
Zhou
,
M. Z.
, and
Wang
,
H. Y.
,
2011
, “
Effects of Structural Parameters on Fluid Flow and Heat Transfer in a Microchannel With Aligned Fan-Shaped Reentrant Cavities
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
411
419
.
16.
Xia
,
G. D.
,
Wang
,
H. Y.
,
Yuan
,
Z. X.
,
Chai
,
L.
, and
Li
,
J.
,
2012
, “
Numerical Simulation of the Interrupted Microchannel Heat Sink With Spoilers in Transverse Zones
,”
J. Beijing Univ. Technol.
,
38
(
6
), pp.
927
932
.
17.
Xia
,
G. D.
,
Chai
,
L.
,
Wang
,
H. Y.
,
Zhou
,
M. Z.
, and
Cui
,
Z.
,
2011
, “
Optimum Thermal Design of Microchannel Heat Sink With Triangular Reentrant Cavities
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1208
1219
.
18.
Chai
,
L.
,
Xia
,
G. D.
, and
Wang
,
H. S.
,
2016
, “
Numerical Study of Laminar Flow and Heat Transfer in Microchannel Heat Sink With Offset Ribs on Sidewalls
,”
Appl. Therm. Eng.
,
92
, pp.
32
41
.
19.
Wang
,
Z.
,
Xia
,
G. D.
,
Ma
,
D. D.
, and
Yang
,
Y. C.
,
2019
, “
Investigation on Flow and Heat Transfer Characteristics in Single-Layer Channel and Double-Layer Channels
,”
J. Eng. Thermophys.
,
40
(
5
), pp.
1126
1130
.
20.
Tan
,
H.
,
Zong
,
K.
,
Xiong
,
C. W.
,
Weng
,
X.
, and
Du
,
P. A.
,
2019
, “
Design and Heat Transfer Performance Analysis of Leaf Vein-Shaped Microchannel Heat Sink
,”
J. Eng. Des.
,
26
(
4
), pp.
477
483
.
21.
Fan
,
X. G.
,
Huang
,
J. Y.
, and
Xu
,
Y. J.
,
2020
, “
Numerical Analysis on Heat Transfer and Flow Characteristics of Grooved Microchannel
,”
Semicond. Optoelectron.
,
41
(
2
), pp.
232
236
and 241.
You do not currently have access to this content.