Abstract

Electromagnetic high-temperature therapy is popular in medical engineering treatments for various diseases including tissue damage ablation repair, hyperthermia, and oncological illness diagnosis. The simulation of transport phenomena in such applications requires multi-physical models featuring magnetohydrodynamics, biorheology, heat transfer, and deformable porous media. Motivated by investigating the fluid dynamics and thermodynamic optimization of such processes, in the present article, a mathematical model is developed to study the combined influence of thermal buoyancy, magnetic field and thermal radiation on the entropy generation, and momentum and heat transfer characteristics in electrically conducting viscoelastic biofluid flow through a vertical deformable porous medium. It is assumed that heat is generated within the fluid by both viscous and Darcy (porous matrix) dissipations. The governing equations for fluid velocity, solid displacement, and temperature are formulated. The boundary value problem is normalized with appropriate transformations. The nondimensional biofluid velocity, solid displacement, and temperature equations with appropriate boundary conditions are solved computationally using a spectral method. Verification of accuracy is conducted via monitoring residuals of the solutions. The effects of various parameters on flow velocity, solid displacement, temperature, and entropy generation are depicted graphically and discussed. Increasing magnetic field and drag parameters are found to reduce the field velocity, solid displacement, temperature, and entropy production. Entropy production is enhanced with an increase in buoyancy parameter and volume fraction of the fluid. The novelty of the work is the simultaneous inclusion of multiple thermophysical phenomena, and the consideration of thermodynamic optimization in coupled thermal/fluid/elastic media. The computations provide an insight into multiphysical transport in electromagnetic radiative tissue ablation therapy and a good benchmark for more advanced simulations.

References

1.
Coussy
,
O.
,
1995
,
Mechanics of Porous Continua
,
John Wiley and Sons
,
New York
.
2.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys
,
12
(
2
), pp.
155
164
.
3.
Mow
,
V. C.
,
Holmest
,
M. H.
, and
Lai
,
W. M.
,
1984
, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
,
17
(
5
), pp.
377
394
.
4.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
5.
Barry
,
S. I.
,
Parker
,
K. H.
, and
Aldis
,
G. K.
,
1991
, “
Fluid Flow Over a Thin Deformable Porous Layer
,”
ZAMP- J. Appl. Math. Phy.
,
42
(
0
), pp.
633
648
.
6.
Sreenadh
,
S.
,
Prasad
,
K. V.
,
Vaidya
,
H.
,
Sudhakara
,
E.
,
Gopi Krishna
,
G.
, and
Krishnamurthy
,
M.
,
2017
, “
MHD Couette Flow of a Jeffrey Fluid Over a Deformable Porous Layer
,”
Int. J. Appl. Comput. Math.
,
3
(
3
), pp.
2125
2138
.
7.
Sreenadh
,
S.
,
Rashidi
,
M. M.
,
Naidu
,
K. S.
, and
Parandhama
,
A.
,
2015
, “
Free Convection Flow of a Jeffrey Fluid Through a Vertical Deformable Porous Stratum
,”
J. Appl. Fluid Mech.
,
9
(
5
), pp.
2391
2401
.
8.
Othman
,
M. I. A.
,
Lotfy
,
K.
,
Said
,
S. M.
, and
Bég
,
O. A.
,
2012
, “
Wave Propagation in a Fiber-Reinforced Micropolar Thermoelastic Medium With Voids Using Three Models
,”
Int. J. Appl. Math. Mech.
,
8
(
12
), pp.
52
69
.
9.
Yu
,
L. N.
, and
Jing
,
L.
,
2007
, “
Entropy Generation Theory for Characterizing the Freezing and Thawing Injury of Biological Materials
,”
Forschung im Ingenieurwesen
,
71
, pp.
125
134
.
10.
Lucia
,
U.
,
2014
, “
Entropy Generation Approach to Cell Systems
,”
Phys. A Stat. Mech. Appl.
,
406
, pp.
1
11
.
11.
Liao
,
F.
,
Cheing
,
G. L. Y.
,
Ren
,
W.
,
Jain
,
S.
, and
Jan
,
Y. K.
,
2018
, “
Application of Multiscale Entropy in Assessing Plantar Skin Blood Flow Dynamics in Diabetics With Peripheral Neuropathy
,”
Entropy
,
20
(
2
), pp.
1
14
.
12.
Lucia
,
U.
,
Ponzetto
,
A.
, and
Deisboeck
,
T. S.
,
2015
, “
A Thermodynamic Approach to the ‘Mitosis/Apoptosis’ Ratio in Cancer
,”
Phys. A Stat. Mech. Appl.
,
436
, pp.
246
255
.
13.
Miguel
,
A. F.
,
2016
, “
Scaling Laws and Thermodynamic Analysis for Vascular Branching of Microvessels
,”
Int. J. Fluid Mech. Res.
,
43
(
5–6
), pp.
390
403
.
14.
Liao
,
F.
,
Yang
,
T. D.
,
Wu
,
F. L.
,
Cao
,
C.
,
Mohamed
,
A.
, and
Jan
,
Y. K.
,
2019
, “
Using Multiscale Entropy to Assess the Efficacy of Local Cooling on Reactive Hyperemia in People With a Spinal Cord Injury
,”
Entropy
,
21
(
1
), pp.
1
12
.
15.
Rashidi
,
M. M.
,
Parsa
,
A. B.
,
Bég
,
O. A.
,
Shamekhi
,
L.
,
Sadri
,
S. M.
, and
Bég
,
T. A.
,
2014
, “
Parametric Analysis of Entropy Generation in Magneto-Hemodynamic Flow in a Semi-Porous Channel With OHAM and DTM
,”
Appl. Bionics Biomech.
,
11
(
1–2
), pp.
47
60
.
16.
Vasu
,
B.
,
RamReddy
,
C.
,
Murthy
,
P. V. S. N.
, and
Gorla
,
R. S. R.
,
2017
, “
Entropy Generation Analysis in Nonlinear Convection Flow of Thermally Stratified Fluid in Saturated Porous Medium With Convective Boundary Condition
,”
ASME J. Heat Transfer
,
139
(
9
), p.
091701
.
17.
Srinivas
,
J.
, and
Ramana Murthy
,
J. V.
,
2016
, “
Second Law Analysis of the Flow of Two Immiscible Micropolar Fluids Between Two Porous Beds
,”
J. Eng. Thermophys.
,
25
(
1
), pp.
126
142
.
18.
Akbar
,
N. S.
,
Shoaib
,
M.
,
Tripathi
,
D.
,
Bhushan
,
S.
, and
Bég
,
O. A.
,
2018
, “
Analytical Approach for Entropy Generation and Heat Transfer Analysis of CNT-Nanofluids Through Ciliated Porous Medium
,”
J. Hydrodyn.
,
30
(
2
), pp.
1
11
.
19.
Datta
,
P.
,
Mahapatra
,
P. S.
,
Ghosh
,
K.
,
Manna
,
N. K.
, and
Sen
,
S.
,
2016
, “
Heat Transfer and Entropy Generation in a Porous Square Enclosure in Presence of an Adiabatic Block
,”
Transp. Porous Media
,
111
(
2
), pp.
305
329
.
20.
Rashidi
,
I.
,
Kolsi
,
L.
,
Ahmadi
,
G.
,
Mahian
,
O.
,
Wongwises
,
S.
, and
Abu-Nada
,
E.
,
2019
, “
Three-Dimensional Modelling of Natural Convection and Entropy Generation in a Vertical Cylinder Under Heterogeneous Heat Flux Using Nanofluids
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
1
), pp.
119
142
.
21.
Patronis
,
A.
,
Richardson
,
R. A.
,
Schmieschek
,
S.
,
Wylie
,
B. J. N.
,
Nash
,
R. W.
, and
Coveney
,
P. V.
,
2018
, “
Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature
,”
Front. Physiol.
,
9
, pp.
1
17
.
22.
Bég
,
O. A.
,
Rashidi
,
M. M.
,
Kavyani
,
N.
, and
Islam
,
M. N.
,
2013
, “
Entropy Generation in Hydromagnetic Convective Von Kármán Swirling Flow: Homotopy Analysis
,”
Int. J. Appl. Math. Mech.
,
9
(
4
), pp.
37
65
.
23.
Khan
,
N. S.
,
Shah
,
Z.
,
Islam
,
S.
,
Khan
,
I.
,
Alkanhal
,
T. A.
, and
Tlili
,
I.
,
2019
, “
Entropy Generation in MHD Mixed Convection non-Newtonian Second-Grade Nanoliquid Thin Film Flow Through a Porous Medium With Chemical Reaction and Stratification
,”
Entropy
,
21
(
2
), pp.
1
44
.
24.
Ramana Murthy
,
J. V.
,
Bég
,
O. A.
, and
Srinivas
,
J.
,
2017
, “
Entropy Generation Analysis of Radiative Heat Transfer Effects on Channel Flow of Two Immiscible Couple Stress Fluids
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
6
), pp.
2191
2202
.
25.
Srinivas
,
J.
,
Adesanya
,
S. O.
,
Falade
,
J. A.
, and
Nagaraju
,
G.
,
2017
, “
Entropy Generation Analysis for a Radiative Micropolar Fluid Flow Through a Vertical Channel Saturated Wth Non-Darcian Porous Medium
,”
Int. J. Appl. Comput. Math.
,
3
(
4
), pp.
3759
3782
.
26.
Jamalabadi
,
M. Y. A.
,
Hooshmand
,
P.
,
Hesabi
,
A.
,
Kwak
,
M. K.
,
Pirzadeh
,
I.
,
Keikha
,
A. J.
, and
Negahdari
,
M.
,
2016
, “
Numerical Investigation of Thermal Radiation and Viscous Effects on Entropy Generation in Forced Convection Blood Flow Over an Axisymmetric Stretching Sheet
,”
Entropy
,
18
(
6
), pp.
1
16
.
27.
Shukla
,
N.
,
Rana
,
P.
,
Bég
,
O. A.
,
Kadir
,
A.
, and
Singh
,
B.
,
2018
, “
Unsteady Electromagnetic Radiative Nanofluid Stagnation-Point Flow From a Stretching Sheet With Chemically Reactive Nanoparticles, Stefan Blowing Effect and Entropy Generation
,”
Proc. I Mech E: Part N- J. Nanomater. Nanoeng. Nanosyst.
,
232
(
2–3
), pp.
69
82
.
28.
Muthukumar
,
S.
,
Sureshkumar
,
S.
,
Chamkha
,
A. J.
,
Muthtamilselvan
,
M.
, and
Prem
,
E.
,
2019
, “
Combined MHD Convection and Thermal Radiation of Nanofluid in a Lid-Driven Porous Enclosure With Irregular Thermal Source on Vertical Sidewalls
,”
J. Therm. Anal. Calorim.
,
138
(
1
), pp.
583
596
.
29.
Li
,
Z.
,
Sheikholeslami
,
M.
,
Chamkha
,
A. J.
,
Raizah
,
Z. A.
, and
Saleem
,
S.
,
2018
, “
Control Volume Finite Element Method for Nanofluid MHD Natural Convective Flow Inside a Sinusoidal Annulus Under the Impact of Thermal Radiation
,”
Comput. Methods Appl. Mech. Eng.
,
338
, pp.
618
633
.
30.
Campo-Deaño
,
L.
,
2013
, “
Viscoelasticity of Blood and Viscoelastic Blood Analogues for Use in Polydymethylsiloxane In Vitro Models of the Circulatory System
,”
Biomicrofluidics
,
7
(
3
), pp.
1
15
.
31.
Thurston
,
G. B.
, and
Greiling
,
H.
,
1978
, “
Viscoelastic Properties of Pathological Synovial Fluids for a Wide Range of Oscillatory Shear Rates and Frequencies
,”
Rheol. Acta
,
17
(
4
), pp.
433
445
.
32.
Silva
,
A. F.
,
Alves
,
M. A.
, and
Oliveira
,
M. S. N.
,
2017
, “
Rheological Behavior of Vitreous Humour
,”
Rheol. Acta
,
56
(
4
), pp.
377
386
.
33.
Hirose
,
R.
,
Nakaya
,
T.
,
Naito
,
Y.
,
Daidoji
,
T.
,
Dohi
,
O.
,
Yoshida
,
N.
,
Yasuda
,
H.
,
Konishi
,
H.
, and
Itoh
,
Y.
,
2019
, “
Identification of the Critical Viscoelastic Factor in the Performance of Submucosal Injection Materials
,”
Mater. Sci. Eng. C
,
94
, pp.
909
919
.
34.
Van Der Reijden
,
W. A.
,
Veerman
,
E. C.
, and
Amerongen
,
A. V.
,
1993
, “
Shear Rate Dependent Viscoelastic Behavior of Human Glandular Salivas
,”
Biorheology
,
30
(
2
), pp.
141
152
.
35.
Zaman
,
A.
,
Ali
,
N.
,
Bég
,
O. A.
, and
Sajid
,
M.
,
2015
, “
Heat and Mass Transfer to Blood Flowing Through a Tapered Overlapping Stenosed Artery
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1084
1095
.
36.
Adesanya
,
S. O.
,
Falade
,
J. A.
,
Srinivas
,
J.
, and
Bég
,
O. A.
,
2017
, “
Irreversibility Analysis for Reactive Third-Grade Fluid Flow and Heat Transfer With Convective Wall Cooling
,”
Alexandria Eng. J.
,
56
(
1
), pp.
153
160
.
37.
Kumar
,
M.
,
Reddy
,
G. J.
,
Ravi Kiran
,
G.
,
Aslam
,
M. A. M.
, and
Bég
,
O. A.
,
2019
, “
Computation of Entropy Generation in Dissipative Transient Natural Convective Viscoelastic Flow
,”
Heat Transfer-Asian Res.
,
48
(
3
), pp.
1067
1092
.
38.
Vajravelu
,
K.
,
Sreenadh
,
S.
, and
Lakshminarayana
,
L.
,
2011
, “
The Influence of Heat Transfer on Peristaltic Transport of a Jeffrey Fluid in a Vertical Porous Stratum
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
8
), pp.
3107
3125
.
39.
Tripathi
,
D.
,
Pandey
,
S. K.
, and
Bég
,
O. A.
,
2013
, “
Mathematical Modelling of Heat Transfer Effects on Swallowing Dynamics of Viscoelastic Food Bolus Through the Human Oesophagus
,”
Int. J. Therm. Sci.
,
70
, pp.
41
53
.
40.
Chernyakova
,
Y. M.
,
Pinchuk
,
L. S.
,
Lobanovskii
,
L. S.
,
Drozd
,
E. S.
, and
Chizhik
,
S. A.
,
2011
, “
Structure and Magnetic Susceptibility of Lubricating Fluids in Synovial Joints
,”
J. Frict. Wear
,
32
(
1
), pp.
54
60
.
41.
Liu
,
C. H.
,
Wu
,
W. C.
,
Lai
,
H. Y.
, and
Hou
,
H. Y.
,
2011
, “
Magnetic Purification of Plasminogen From Human Plasma by Specific Lysine Affinity
,”
J. Biosci. Bioeng.
,
112
(
3
), pp.
219
224
.
42.
Voltairas
,
P. A.
,
Fotiadis
,
D. I.
, and
Michalis
,
L. K.
,
2002
, “
Hydrodynamics of Magnetic Drug Targeting
,”
J. Biomech.
,
35
(
6
), pp.
813
821
.
43.
Shapiro
,
B.
,
Kulkarni
,
S.
,
Nacev
,
A.
,
Sarwar
,
A.
,
Preciado
,
D.
, and
Depireux
,
D. A.
,
2014
, “
Shaping Magnetic Fields to Direct Therapy to Ears and Eyes
,”
Ann. Rev. Biomed. Eng.
,
16
(
1
), pp.
455
481
.
44.
Manzoor
,
N.
,
Maqbool
,
K.
,
Bég
,
O. A.
, and
Shaheen
,
S.
,
2018
, “
Adomian Decomposition Solution for Propulsion of Dissipative Magnetic Jeffrey Biofluid in a Ciliated Channel Containing a Porous Medium With Forced Convection Heat Transfer
,”
Heat Transfer Asian Res.
,
48
(
2
), pp.
556
581
.
45.
Ramesh
,
K.
,
Tripathi
,
D.
,
Bég
,
O. A.
, and
Kadir
,
A.
,
2018
, “
Slip and Hall Current Effects on Viscoelastic Fluid-Particle Suspension Flow in a Peristaltic Hydromagnetic Blood Micropump
,”
Iran. J. Sci. Tech. Trans. Mech. Eng.
,
43
(
4
), pp.
675
692
.
46.
Gopi Krishna
,
G.
,
Sreenadh
,
S.
, and
Srinivas
,
A. N. S.
,
2017
, “
Entropy Generation and Heat Transfer in a Casson Fluid Flow Through a Vertical Deformable Porous Stratum
,”
World Appl. Sci. J.
,
35
(
7
), pp.
1059
1067
.
47.
Gopi Krishna
,
G.
,
Sreenadh
,
S.
, and
Srinivas
,
A. N. S.
,
2018
, “
An Entropy Generation on Viscous Fluid in the Inclined Deformable Porous Medium
,”
Differ. Equations Dyn. Syst.
,
26
, Article Number 153.
48.
Sreenadh
,
S.
,
Gopi Krishna
,
G.
,
Srinivas
,
A. N. S.
, and
Sudhakara
,
E.
,
2018
, “
Entropy Generation Analysis for MHD Flow Through a Vertical Deformable Porous Layer
,”
J. Porous Media
,
21
(
6
), pp.
523
538
.
49.
Brewster
,
M. Q.
,
1992
,
Thermal Radiative Transfer and Properties
,
Wiley
,
New York
.
50.
Trefethan
,
L. N.
,
2000
,
Spectral Methods in MATLAB
,
SIAM
,
Philadelphia, PA
.
51.
Bég
,
O. A.
,
Motsa
,
S. S.
,
Islam
,
M. N.
, and
Lockwood
,
M.
,
2014
, “
Pseudo-Spectral and Variational Iteration Simulation of Exothermically-Reacting Rivlin-Ericksen Viscoelastic Flow and Heat Transfer in a Rocket Propulsion Duct
,”
Comput. Therm. Sci.
,
6
(
2
), pp.
91
102
.
52.
Bég
,
O. A.
,
Motsa
,
S. S.
,
Kadir
,
A.
,
Bég
,
T. A.
, and
Islam
,
M. N.
,
2016
, “
Spectral Quasi-Linear Numerical Simulation of Micropolar Convective Wall Plumes in High Permeability Porous Media
,”
J. Eng. Thermophys.
,
25
(
4
), pp.
1
24
.
53.
Elsayed
,
A. F.
, and
Bég
,
O. A.
,
2014
, “
New Computational Approaches for Biophysical Heat Transfer in Tissue Under Ultrasonic Waves: Variational Iteration and Chebyschev Spectral Simulations
,”
J. Mech. Med. Biol.
,
14
(
3
), pp.
1450043.1
1450043.17
.
54.
Bég
,
O. A.
,
Hameed
,
M.
, and
Bég
,
T. A.
,
2013
, “
Chebyschev Spectral Collocation Simulation of Nonlinear Boundary Value Problems in Electrohydrodynamics
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
14
(
2
), pp.
104
115
.
55.
Bég
,
O. A.
,
Hoque
,
M. M.
,
Wahiuzzaman
,
M.
,
Mahmud
,
M.
, and
Ferdows
,
M.
,
2014
, “
Spectral Numerical Simulation of Laminar Magneto-Physiological Dean Flow
,”
J. Mech. Med. Biol.
,
14
(
3
), pp.
1450047.1
1450047.18
.
56.
Bellman
,
R.
, and
Kalaba
,
R.
,
1965
,
Quasilinearization and Nonlinear Boundary Value Problems
,
Elsevier
,
New York
.
57.
Mallikarjuna
,
B.
,
Rashad
,
A. M.
,
Chamkha
,
A. J.
, and
Hariprasad Raju
,
S.
,
2016
, “
Chemical Reaction Effects on MHD Convective Heat and Mass Transfer Flow Past a Rotating Vertical Cone Embedded in a Variable Porosity Regime
,”
Afrika Matematika
,
27
(
3–4
), pp.
645
665
.
58.
Mallikarjuna
,
B.
,
Rashidi
,
M. M.
, and
Raju
,
S. H.
,
2017
, “
Influence of Nonlinear Convection and Thermophoresis on Heat and Mass Transfer From a Rotating Cone to Fluid Flow in Porous Medium
,”
Therm. Sci.
,
21
(
6B
), pp.
2781
2793
.
59.
Srinivasacharya
,
D.
,
Mallikarjuna
,
B.
, and
Bhuvanavijaya
,
R.
,
2016
, “
Effects of Thermophoresis and Variable Properties on Mixed Convection Along a Vertical Wavy Surface in a Fluid Saturated Porous Medium
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1243
1253
.
60.
Vyas
,
P.
, and
Srivastava
,
N.
,
2015
, “
Entropy Analysis of Generalized MHD Couette Flow Inside a Composite Duct With Asymmetric Convective Cooling
,”
Arabian J. Sci. Eng.
,
40
(
2
), pp.
603
614
.
61.
Liu
,
C.
,
Amin
,
M.
, and
Abousleiman
,
Y. N.
,
2018
, “
Theory and Analytical Solutions to Coupled Processes of Transport and Deformation in Dual-Porosity Dual-Permeability Poro-Chemo-Electro-Elastic Media
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
111006
.
62.
Cheng
,
A. H. D.
, and
Detournay
,
E.
,
1988
, “
A Direct Boundary Element Method for Plane Strain Poroelasticity
,”
Int. J. Numer. Anal. Methods Geomech.
,
12
(
5
), pp.
551
572
.
63.
Cess
,
R. D.
,
1964
, “
The Interaction of Thermal Radiation With Conduction and Convection Heat Transfer
,”
Adv. Heat Transfer
,
1
, pp.
1
50
.
64.
Boopalan
,
P. R. J. V. C.
,
2011
, “
Pulsed Electromagnetic Field Therapy Results in Healing of Full Thickness Articular Cartilage Defect
,”
Int Orthop.
,
35
(
1
), pp.
143
148
.
65.
Hidouri
,
N.
,
Bouabid
,
M.
,
Magherbi
,
M.
, and
Brahim
,
A. B.
,
2011
, “
Effects of Radiation Heat Transfer on Entropy Generation at Thermosolutal Convection in a Square Cavity Subjected to a Magnetic Field
,”
Entropy
,
13
(
12
), pp.
1992
2012
.
You do not currently have access to this content.