Abstract

In this study, the development of a physical model for a miniature refrigeration system is presented. The model is based on physical foundations and the incorporation of information provided in the manufacturers’ catalogs. The model is able to adequately predict the energy behavior of the refrigeration system, showing a maximum error of 10% in comparison with the experimental information found in the literature. Thus, the model is used to perform a multi-objective optimization by comparing two algorithms, nondominated storing genetic algorithm II and multi-objective particle swarm optimization algorithm. For this purpose, three scenarios are proposed whose objective functions involve parameters such as coefficient of performance, compressor discharge temperature, energy consumption, and refrigerant mass flowrate. The decision variables are the evaporation and condensation temperatures, the rotational speed of the compressor, and the degrees of subcooling and superheating. Thus, an overview of the optimal operating conditions that represent the best energy performance of the refrigeration system is provided.

References

1.
Barbosa
,
J. R.
,
Ribeiro
,
G. B.
, and
De Oliveira
,
P. A.
,
2011
, “
A State-of-the-Art Review of Compact Vapor Compression Refrigeration Systems and Their Applications
,”
Heat Transfer Eng.
,
33
(
4
), pp.
356
374
.
2.
Mongia
,
R.
,
Masahiro
,
K.
,
Distefano
,
E.
,
Barry
,
J.
,
Chen
,
W.
,
Izenson
,
M.
,
Possamai
,
F.
,
Zimmermann
,
A.
, and
Mochizuki
,
M.
,
2006
, “
Small Scale Refrigeration System for Electronics Cooling Within a Notebook Computer
,”
Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, ITHERM
,
San Diego, CA
,
May 30–June 2
, pp.
751
758
.
3.
Trutassanawin
,
S.
,
Groll
,
E. A.
,
Garimella
,
S. V.
, and
Cremaschi
,
L.
,
2006
, “
Experimental Investigation of a Miniature-Scale Refrigeration System for Electronics Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
3
), pp.
678
687
.
4.
Chang
,
C. C.
,
Liang
,
N. W.
, and
Chen
,
S. L.
,
2010
, “
Miniature Vapor Compressor Refrigeration System for Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
4
), pp.
794
800
.
5.
Wu
,
Z.
, and
Du
,
R.
,
2010
, “
Design and Experimental Study of a Miniature Vapor Compression Refrigeration System for Electronics Cooling
,”
Appl. Therm. Eng.
,
31
(
2
), pp.
385
390
.
6.
Yuan
,
W.
,
Yang
,
B.
,
Yang
,
Y.
,
Ren
,
K.
,
Xu
,
J.
, and
Liao
,
Y.
,
2015
, “
Development and Experimental Study of the Characteristics of a Prototype Miniature Vapor Compression Refrigerator
,”
Appl. Energy
,
143
(
1
), pp.
47
57
.
7.
Garimella
,
S.
,
2006
, “
Advances in Mesoscale Thermal Management Technologies for Microelectronics
,”
Microelectron. J.
,
37
(
11
), pp.
1165
1185
.
8.
Ahmad
,
M. W.
,
Mourshed
,
M.
,
Yuce
,
B.
, and
Rezgui
,
Y.
,
2016
, “
Computational Intelligence Techniques for HVAC Systems: A Review
,”
Build. Simul.
,
9
(
4
), pp.
359
398
.
9.
Holland
,
J. H.
,
1992
, “
Genetic Algorithms
,”
Sci. Am.
,
267
(
1
), pp.
66
73
.
10.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
11.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
,
2000
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
Lect. Notes Comput. Sci.
,
1917
(
1
), pp.
849
858
.
12.
Zendehboundi
,
A.
,
Mota-Babiloni
,
A.
,
Makhnatch
,
P.
, and
Saidur
,
R.
,
2019
, “
Modeling and Multi-Objetive Optimization of an R450A Vapor Compression Refrigeration System
,”
Int. J. Refrig.
,
100
(
46
), pp.
243
256
.
13.
Sayyaadi
,
H.
, and
Nejatolahi
,
M.
,
2011
, “
Multi-Objective Optimization of a Cooling Tower Assisted Vapor Compression Refrigeration System
,”
Int. J. Refrig.
,
34
(
1
), pp.
243
256
.
14.
Sayyaadi
,
H.
,
Amlashi
,
E. H.
, and
Amidpour
,
M.
,
2009
, “
Multi-Objective Optimization of a Vertical Ground Source Heat Pump Using Evolutionary Algorithm
,”
Energy Convers. Manage.
,
50
(
8
), pp.
2035
2046
.
15.
Jain
,
A.
,
Sachdeva
,
G.
,
Kachhwaha
,
S.
, and
Patel
,
B.
,
2016
, “
Thermo-Economic and Environmental Analyses Based Multi-Objective Optimization of Vapor Compression–Absorption Cascaded Refrigeration System Using NSGA-II Technique
,”
Energy Convers. Manage.
,
113
(
1
), pp.
230
242
.
16.
Aminyavari
,
M.
,
Najafi
,
B.
,
Shirazi
,
A.
, and
Rinaldi
,
F.
,
2014
, “
Exergetic, Economic and Environmental (3E) Analyses, and Multi-Objective Optimization of a CO2/NH3 Cascade Refrigeration System
,”
Appl. Therm. Eng.
,
65
(
1
), pp.
42
50
.
17.
Klein
,
S. A.
,
2019
, “
Engineering Equation Solver (EES) V10.64
”, F-Chart Software, Madison, WI, http://fchartsoftware.com/ees/
18.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
John Wiley and Sons
,
New York
.
19.
Kim
,
M. H.
, and
Bullard
,
C. W.
,
2002
, “
Air-Side Thermal Hydraulic Performance of Multi-Louvered fin Aluminum Heat Exchangers
,”
Int. J. Refrig.
,
25
(
3
), pp.
390
400
.
20.
Gnielinski
,
V.
,
1976
, “
New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
21.
Moser
,
K. W.
,
Webb
,
R. L.
, and
Na
,
B.
,
1998
, “
A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
410
417
.
22.
Shah
,
M. M.
,
2016
, “
Comprehensive Correlations for Heat Transfer During Condensation in Conventional and Mini/Micro Channels in All Orientations
,”
Int. J. Refrig.
,
67
(
36
), pp.
22
41
.
23.
Hermes
,
C. J. L.
,
Melo
,
C.
, and
Knabben
,
F. T.
,
2010
, “
Algebraic Solution of Capillary Tube Flows Part I: Adiabatic Capillary Tubes
,”
Appl. Therm. Eng.
,
30
(
5
), pp.
449
457
.
24.
Giagkiozis
,
I.
,
Purshouse
,
R. C.
, and
Fleming
,
P. J.
,
2013
, “
An Overview of Population-Based Algorithms for Multi-Objective Optimization
,”
Int. J. Syst. Sci.
,
46
(
9
), pp.
1
42
.
25.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
26.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Multi-Objective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.
27.
Coello
,
C. A.
, and
Lechuga
,
M. S.
,
2002
, “
MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization
,”
Congr. Evol. Comput.
,
2
(
1
), pp.
1051
1056
.
28.
Sierra
,
M. R.
, and
Coello
,
C. A.
,
2005
, “
Improving PSO-Based Multi-Objective Optimization Using Crowding, Mutation and ∈-Dominance
,”
International Conference on Evolutionary Multi-Criterion Optimization
,
May 12–17
, pp.
505
519
.
29.
Benítez-Hidalgo
,
A.
,
Nebro
,
A.
,
García-Nieto
,
J.
,
Oregi
,
I.
, and
Del Ser
,
J.
,
2019
, “
jMetalPy: A Python Framework for Multi-Objective Optimization With Metaheuristics
,”
Swarm Evol. Comput.
,
51
(
1
), p.
100598
.
You do not currently have access to this content.