Abstract

The smart diesel program requires the engine electronic control unit to consider additional parameters, such as altitude and climatic conditions, in the mapping calibration process. A specially designed environmental simulation cabin, which can simulate environmental conditions at any longitude and dimension, would allow dynamometer testing to be performed indoors. Considering its high cost, a three-dimensional (3D) computational fluid dynamics (CFD) is needed to guide and/or complement experimental researches. As a result, the main objective of this study was to establish a 3D RANS model (i.e., reasonable computational cost and running time) that can provide in-cylinder details and predict the efficiency of a 6V150 diesel engine under varied operating conditions. A sector mesh approach was employed, considering only the compression, combustion, and expansion periods from intake valve closing to exhaust valve opening. The results indicated that the model simulated cylinder pressure agreed well with the experimental data, with relative errors of less than 6% during the primary compression, combustion, and expansion. Further, the model predicted heat release phasing was inconsistent with the experimental results, with absolute errors of less than one crank angle degree for peak pressure location, CA50, and ignition delay. In addition, the multidimensional model captured the effects of environmental pressure and temperature on spray formation (i.e., the dominant phenomenological event). Moreover, the model reasonably reproduced the effects of engine control variables on performance and emissions. All these observations demonstrated the validity of the selection and calibration of geometry, chemistry, and submodels including turbulence, spray, heat transfer, combustion, etc. Overall, the model was deemed capable of predicting combustion characteristics under extreme conditions, including high-temperature, high-cold, and high-altitude environments, which can facilitate the development of smart engines.

References

1.
Duan
,
X.
,
Xu
,
Z.
,
Sun
,
X.
,
Deng
,
B.
, and
Liu
,
J.
,
2021
, “
Effects of Injection Timing and EGR on Combustion and Emissions Characteristics of the Diesel Engine Fuelled With Acetone–Butanol–Ethanol/Diesel Blend Fuels
,”
Energy
,
231
, p.
121069
.
2.
Liu
,
J.
,
Huang
,
Q.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2022
, “
Comparison of Random Forest and Neural Network in Modeling the Performance and Emissions of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032310
.
3.
Liu
,
J.
, and
Wang
,
H.
,
2022
, “
Machine Learning Assisted Modeling of Mixing Timescale for LES/PDF of High-Karlovitz Turbulent Premixed Combustion
,”
Combust. Flame
,
238
, p.
111895
.
4.
Guan
,
J.
,
Li
,
Y.
,
Liu
,
J.
,
Duan
,
X.
,
Shen
,
D.
,
Jia
,
D.
, and
Ku
,
C.
,
2021
, “
Experimental and Numerical Research on the Performance Characteristics of OPLVCR Engine Based on the NSGA II Algorithm Using Digital Twins
,”
Energy Convers. Manage.
,
236
, p.
114052
.
5.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
6.
Bowditch
,
F. W.
,
1961
, “
A New Tool for Combustion Research A Quartz Piston Engine
,”
SAE Technical Paper No. 610002
.
7.
Chen
,
L.
,
Zhang
,
R.
,
Pan
,
J.
, and
Wei
,
H.
,
2020
, “
Optical Study on Autoignition and Knocking Characteristics of Dual-Fuel Engine Under CI vs SI Combustion Modes
,”
Fuel
,
266
, p.
117107
.
8.
Zhao
,
W.
,
Wei
,
H.
,
Jia
,
M.
,
Lu
,
Z.
,
Luo
,
K. H.
,
Chen
,
R.
, and
Zhou
,
L.
,
2019
, “
Flame–Spray Interaction and Combustion Features in Split-Injection Spray Flames Under Diesel Engine-Like Conditions
,”
Combust. Flame
,
210
, pp.
204
221
.
9.
Zhao
,
W.
,
Zhou
,
L.
,
Liu
,
Z.
,
Qi
,
J.
,
Lu
,
Z.
,
Wei
,
H.
, and
Shu
,
G.
,
2021
, “
Numerical Study on the Combustion Process of n-Heptane Spray Flame in Methane Environment Using Large Eddy Simulation
,”
Combust. Sci. Technol.
,
193
(
1
), pp.
142
166
.
10.
Wiebe
,
I.
,
1962
, “
Progress in Engine Cycle Analysis: Combustion Rate and Cycle Processes
,”
Mashgiz, Ural-Siberia Branch, 271
.
11.
Watson
,
N.
,
Pilley
,
A. D.
, and
Marzouk
,
M.
,
1980
, “
A Combustion Correlation for Diesel Engine Simulation
,”
SAE Technical Paper No. 800029
.
12.
Woschni
,
G.
,
1973
, “
Eine Methode zur Vorausberechnung der Anderung des Brennverlaufs Mittelschnelllaufender Dieselmotoren bei Geänderten Betriebsbedingungen
,”
Motortech. Z.
,
34
, pp.
106
115
.
13.
Whitehouse
,
N. D.
, and
Way
,
R.
,
1969
, “
Rate of Heat Release in Diesel Engines and Its Correlation With Fuel Injection Data
,”
Proc. Inst. Mech. Eng., Conf. Proc.
,
184
(
10
), pp.
17
27
.
14.
Shahed
,
S. M.
,
Chiu
,
W. S.
, and
Lyn
,
W. T.
,
1975
, “
A Mathematical Model of Diesel Combustion
,”
Combustion in Engines, Institution of Mechanical Engineers, Paper No. C94/75
, p.
119
128
.
15.
Chiu
,
W. S.
,
Shahed
,
S. M.
, and
Lyn
,
W. T.
,
1976
, “
A transient Spray Mixing Model for Diesel Combustion
,”
SAE Technical Paper No. 760128
.
16.
Kono
,
S.
,
Nagao
,
A.
, and
Motooka
,
H.
,
1985
, “
Prediction of In-Cylinder Flow and Spray Formation Effects on Combustion in Direct Injection Diesel Engines
,”
SAE Technical Paper No. 850108
.
17.
Hiroyasu
,
H.
, and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines
,”
SAE Technical Paper No. 760129
.
18.
Hiroyasu
,
H.
,
Kadota
,
T.
, and
Arai
,
M.
,
1983
, “
Development and Use of a Spray Combustion Modeling to Predict Diesel Engine Efficiency and Pollutant Emissions: Part 1 Combustion Modeling
,”
Bull. JSME
,
26
(
214
), pp.
569
575
.
19.
Jung
,
D.
, and
Assanis
,
D. N.
,
2001
, “
Multi-zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions
,”
SAE Technical Paper No. 2001-01-1246
.
20.
Rakopoulos
,
C. D.
,
Scott
,
M. A.
,
Kyritsis
,
D. C.
, and
Giakoumis
,
E. G.
,
2008
, “
Availability Analysis of Hydrogen/Natural Gas Blends Combustion in Internal Combustion Engines
,”
Energy
,
33
(
2
), pp.
248
255
.
21.
Rakopoulos
,
C. D.
,
Antonopoulos
,
K. A.
, and
Rakopoulos
,
D. C.
,
2006
, “
Multi-zone Modeling of Diesel Engine Fuel Spray Development With Vegetable Oil, Bio-diesel or Diesel Fuels
,”
Energy Convers. Manage.
,
47
(
11–12
), pp.
1550
1573
.
22.
Rakopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
1997
, “
Development of Cumulative and Availability Rate Balances in a Multi-Cylinder Turbocharged Indirect Injection Diesel Engine
,”
Energy Convers. Manage.
,
38
(
4
), pp.
347
369
.
23.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE Technical Paper No. 2003-01-1043
.
24.
Colin
,
O.
, and
Benkenida
,
A.
,
2004
, “
The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion
,”
Oil Gas Sci. Technol.
,
59
(
6
), pp.
593
609
.
25.
Xin
,
J.
,
Montgomery
,
D.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
Multidimensional Modeling of Combustion for a Six-Mode Emissions Test Cycle on a DI Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
119
(
3
), pp.
683
691
.
26.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2006
, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
,
145
(
1–2
), pp.
1
15
.
27.
Zhao
,
F.
,
Ruan
,
Z.
,
Yue
,
Z.
,
Hung
,
D. L.
,
Som
,
S.
, and
Xu
,
M.
,
2020
, “
Time-Sequenced Flow Field Prediction in an Optical Spark-Ignition Direct-Injection Engine Using Bidirectional Recurrent Neural Network (bi-RNN) With Long Short-Term Memory
,”
Appl. Therm. Eng.
,
173
, p.
115253
.
28.
Zhao
,
W.
,
Zhou
,
L.
,
Qi
,
J.
, and
Wei
,
H.
,
2020
, “
The Influence of Intermediate Species on the Combustion Process of n-Dodecane Flame
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
234
(
2–3
), pp.
334
348
.
29.
Niu
,
X.
,
Wang
,
H.
,
Hu
,
S.
,
Yang
,
C.
, and
Wang
,
Y.
,
2018
, “
Multi-objective Online Optimization of a Marine Diesel Engine Using NSGA-II Coupled With Enhancing Trained Support Vector Machine
,”
Appl. Therm. Eng.
,
137
, pp.
218
227
.
30.
Niu
,
X.
,
Yang
,
C.
,
Wang
,
H.
, and
Wang
,
Y.
,
2017
, “
Investigation of ANN and SVM Based on Limited Samples for Performance and Emissions Prediction of a CRDI-Assisted Marine Diesel Engine
,”
Appl. Therm. Eng.
,
111
, pp.
1353
1364
.
31.
Huang
,
Q.
,
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
On the Use of Artificial Neural Networks to Model the Performance and Emissions of a Heavy-Duty Natural Gas Spark Ignition Engine
,”
Int. J. Engine Res.
.
32.
Namazian
,
M.
, and
Heywood
,
J. B.
,
1982
, “
Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency and Power
,”
SAE Technical Paper No. 820088
.
33.
Stocchi
,
I.
,
Liu
,
J.
,
Dumitrescu
,
C. E.
,
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2019
, “
Effect of Piston Crevices on the Numerical Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112204
.
34.
Reaction Design
,
2016
,
ANSYS Forte 17.2 User Guide
,
ANSYS
,
San Diego, CA
.
35.
Vishwanathan
,
G.
, and
Reitz
,
R. D.
,
2008
, “
Numerical Predictions of Diesel Flame Lift-Off Length and Soot Distributions Under Low Temperature Combustion Conditions
,”
SAE Technical Paper No. 2008-01-1331
.
36.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ɛ Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
37.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
38.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.
39.
Su
,
T. F.
,
Patterson
,
M. A.
,
Reitz
,
R. D.
, and
Farrell
,
P. V.
,
1996
, “
Experimental and Numerical Studies of High Pressure Multiple Injection Sprays
,”
SAE Technical Paper No. 960861
.
40.
Abani
,
N.
,
Kokjohn
,
S.
,
Park
,
S. W.
,
Bergin
,
M.
,
Munnannur
,
A.
,
Ning
,
W.
,
Sun
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations
,”
SAE Technical Paper No. 2008-01-0970
.
41.
Reitz
,
R. D.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation Spray Technol.
,
3
(
4
), pp.
309
337
.
42.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
1987
, “
The TAB Method for Numerical Calculation of Spray Droplet Breakup
,”
SAE Technical Paper No. 872089
.
43.
Sun
,
Y.
, and
Reitz
,
R. D.
,
2007
, “
Modeling Low-Pressure Injections in Diesel HCCI Engines
,”
Proceedings of ILASS Americas, 20th Annual Conference on Liquid Atomization and Spray Systems.
44.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.
45.
Han
,
Z.
,
Xu
,
Z.
, and
Trigui
,
N.
,
2000
, “
Spray/Wall Interaction Models for Multidimensional Engine Simulation
,”
Int. J. Engine Res.
,
1
(
1
), pp.
127
146
.
46.
O'rourke
,
P. J.
, and
Amsden
,
A. A.
,
1996
, “
A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines
,”
SAE Technical Paper No. 961961
.
47.
O'Rourke
,
P. J.
, and
Amsden
,
A. A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,”
SAE Technical Paper No. 2000-01-0271
.
48.
Liang
,
L.
, and
Reitz
,
R. D.
,
2006
, “
Spark Ignition Engine Combustion Modeling Using a Level Set Method With Detailed Chemistry
,”
SAE Technical Paper No. 2006-01-0243
.
49.
Liang
,
L.
,
Reitz
,
R. D.
,
Iyer
,
C. O.
, and
Yi
,
J.
,
2007
, “
Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics
,”
SAE Technical Paper No. 2007-01-0165
.
50.
Kong
,
D.
,
Eckhoff
,
R. K.
, and
Alfert
,
F.
,
1995
, “
Auto-ignition of CH4air, C3H8air, CH4/C3H8/air and CH4/CO2/air Using a 11 Ignition Bomb
,”
J. Hazard. Mater.
,
40
(
1
), pp.
69
84
.
51.
Kong
,
S. C.
, and
Reitz
,
R. D.
,
2002
, “
Use of Detailed Chemical Kinetics to Study HCCI Engine Combustion With Consideration of Turbulent Mixing Effects
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
702
707
.
52.
Zhang
,
S.
,
Duan
,
X.
,
Liu
,
Y.
,
Guo
,
G.
,
Zeng
,
H.
,
Liu
,
J.
,
Lai
,
M. C.
,
Talekar
,
A.
, and
Yuan
,
Z.
,
2019
, “
Experimental and Numerical Study the Effect of Combustion Chamber Shapes on Combustion and Emissions Characteristics in a Heavy-Duty Lean Burn SI Natural Gas Engine Coupled With Detail Combustion Mechanism
,”
Fuel
,
258
, p.
116130
.
53.
Zeldvich
,
Y. B.
,
1946
, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
J. Acta Physicochimica
,
21
, p.
577
.
54.
Verma
,
I.
,
Bish
,
E.
,
Kuntz
,
M.
,
Meeks
,
E.
,
Puduppakkam
,
K.
,
Naik
,
C.
, and
Liang
,
L.
,
2016
, “
CFD Modeling of Spark Ignited Gasoline Engines-Part 1: Modeling the Engine Under Motored and Premixed-Charge Combustion Mode
,”
SAE Technical Paper No. 2016-01-0591
.
55.
Verma
,
I.
,
Bish
,
E.
,
Kuntz
,
M.
,
Meeks
,
E.
,
Puduppakkam
,
K.
,
Naik
,
C.
, and
Liang
,
L.
,
2016
, “
CFD Modeling of Spark Ignited Gasoline Engines-Part 2: Modeling the Engine in Direct Injection Mode Along With Spray Validation
,”
SAE Technical Paper No. 2016-01-0579
.
You do not currently have access to this content.