Abstract

By solving the unsteady Reynolds-averaged Navier–Stokes equations and SST k–ω turbulence model, effects of rib design on the unsteady tip heat transfer amplitude for a turbine rotor blade with different rotating speeds are numerically investigated. The results of turbulence model validation are in good agreement with the experimental data. The grid independence verification is also satisfied. The results indicate that the averaged heat transfer coefficient of ribbed tip is 3.1% lower than that of traditional squealer tip and the amplitude of the heat transfer coefficient at the ribbed blade tip is 31.7% lower than that at the traditional squealer tip at standard speed condition. Low-energy passing wake causes the variation of flow field pressure near the tip clearance, which changes the strength of vortex such as pressure corner vortex, scratching vortex, leading edge vortex, and rib vortex inside the cavity, and thus causes the tip heat transfer coefficient fluctuation. At 85% standard speed, the average heat transfer coefficient amplitude of the ribbed tip is reduced by 35.4%. At 115% standard speed, the average heat transfer coefficient amplitude of the ribbed tip is reduced by 44.5%. Ribbed blade tip is suitable to reduce the heat transfer coefficient in turbine design

References

1.
Arisi
,
A.
,
Xue
,
S.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2015
, “
Numerical Investigation of Aerothermal Characteristics of the Blade Tip and Near-Tip Regions of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
137
(
9
), p.
091002
.
2.
Park
,
J. S.
,
Lee
,
D. H.
,
Rhee
,
D. H.
, and
Kang
,
S. H.
,
2010
, “
Heat Transfer and Effectiveness on the Film Cooled Tip and Inner Rim Surfaces of a Turbine Blade
,” ASME Paper No. GT2010-23203.
3.
Acharya
,
S.
,
Kramer
,
G.
,
Moreaux
,
L.
, and
Nakamata
,
C.
,
2010
, “
Squealer Tip Heat Transfer With Film Cooling
,” ASME Paper No. GT2010-23688.
4.
Anto
,
K.
,
Xue
,
S.
,
Ng
,
W. F.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2013
, “
Effects of Tip Clearance Gap and Exit Mach Number on Turbine Blade Tip and Near-Tip Heat Transfer
,” ASME Paper No. GT2013-94345.
5.
Ye
,
M.
,
He
,
K.
, and
Yan
,
X.
,
2019
, “
Influence of Wear Damages on Aerodynamic and Heat Transfer Performance in Squealer Tip Gap
,”
Appl. Therm. Eng.
,
159
, p.
113976
.
6.
Xie
,
G.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Sunden
,
B.
,
2014
, “
Flow Structure and Heat Transfer in a Square Passage With Offset Mid-Truncated Ribs
,”
Int. J. Heat Mass Transfer
,
71
(
4
), pp.
44
56
.
7.
Wheeler
,
A.P.S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.
8.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
9.
Gao
,
J.
,
Zheng
,
Q.
,
Niu
,
X.
, and
Yue
,
G.
,
2016
, “
Aerothermal Characteristics of a Transonic Tip Flow in a Turbine Cascade With Tip Clearance Variations
,”
Appl. Therm. Eng.
,
107
, pp.
271
283
.
10.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
11.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part II: Analysis of Aerothermal Interaction Physics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052507
.
12.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M. L. G.
,
Ligrani
,
P. M.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2011
, “
Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.
13.
Shyam
,
V.
, and
Ameri
,
A.
,
2011
, “
Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating
,” ASME Paper No. GT2011-46390.
14.
Yan
,
X.
,
Huang
,
Y.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Numerical Investigations Into the Effect of Squealer-Winglet Blade Tip Modifications on Aerodynamic and Heat Transfer Performance
,”
Int. J. Heat Mass Transfer
,
103
, pp.
242
253
.
15.
Jiang
,
S.
,
Li
,
Z.
, and
Li
,
J.
,
2019
, “
Effects of the Squealer Winglet Structures on the Heat Transfer Characteristics and Aerodynamic Performance of Turbine Blade Tip
,”
Int. J. Heat Mass Transfer
,
139
, pp.
860
872
.
16.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2019
, “
Influences of a Multi-Cavity Tip on the Blade Tip and the Over Tip Casing Aerothermal Performance in a High Pressure Turbine Cascade
,”
Appl. Therm. Eng.
,
147
, pp.
347
360
.
17.
Park
,
J.
,
Park
,
S.
, and
Ligrani
,
P. M.
,
2016
, “
Effects of Gap Size for Parallel 45 Degree Angled Rib Turbulators
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
6
), pp.
1768
1786
.
18.
Won
,
S. Y.
,
Burgess
,
N. K.
,
Peddicord
,
S.
, and
Ligrani
,
P. M.
,
2004
, “
Spatially-Resolved Surface Heat Transfer for Parallel Rib Turbulators With 45 Degree Orientations Including Test Surface Conduction Analysis
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
2
), pp.
193
203
.
19.
Thomas
,
G. A.
,
Atkins
,
N. R.
, and
Thorpe
,
S. J.
,
2011
, “
The Effect of a Casing Step on the Over-Tip Aerothermodynamics of a Transonic HP Turbine Stage
,” ASME Paper No. GT2007-2780.
20.
Tamunobere
,
O.
,
Drewes
,
C.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2015
, “
Heat Transfer to an Actively Cooled Shroud With Blade Rotation
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
041020
.
21.
Wang
,
T.
, and
Ragab
,
R.
,
2020
, “
Investigation of Applicability of Transporting Water Mist for Cooling Turbine Blades
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p.
011009
.
22.
Abdelmaksoud
,
R.
, and
Wang
,
T.
,
2021
, “
A Numerical Investigation of Air/Mist Cooling Through a Conjugate, Rotating 3D Gas Turbine Blade With Internal, External, and Tip Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
021004
.
23.
Kim
,
G. M.
,
Lee
,
S. I.
,
Jeong
,
J. Y.
,
Kwak
,
J. S.
,
Kim
,
S.
, and
Choi
,
J. U.
,
2021
, “
An Experimental Study of the Leakage Flow Effect on the Film Cooling Effectiveness of a Gas Turbine Shroud
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
061007
.
24.
Collopy
,
H.
,
Ligrani
,
P. M.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Effects of Tip Gap on Transonic Turbine Blade Heat Transfer Characteristics With Pressure Side Film Cooling
,”
Int. J. Heat Mass Transfer
,
187
, pp.
1
14
.
25.
Ameri
,
A. A.
,
Rigby
,
D. L.
,
Steinthorsson
,
E.
,
Heidmann
,
J.
, and
Fabian
,
J. C.
,
2010
, “
Unsteady Analysis of Blade and Tip Heat Transfer as Influenced by the Upstream Momentum and Thermal Wakes
,”
ASME J. Turbomach.
,
132
(
4
), p.
041007
.
26.
Rahman
,
M. H.
,
Kim
,
S. I.
,
Hassan
,
I.
, and
El Ayoubi
,
C.
,
2010
, “
Unsteady Tip Leakage Flow Characteristics and Heat Transfer on Turbine Blade Tip and Casing
,” ASME Paper No. GT2010-22104.
27.
Atkins
,
N. R.
,
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2012
, “
Unsteady Effects on Transonic Turbine Blade-Tip Heat Transfer
,”
ASME J. Turbomach.
,
134
(
6
), p.
061002
.
28.
Zhou
,
Z.
,
Chen
,
S.
, and
Wang
,
S.
,
2017
, “
Unsteady Winglet-Cavity Tip on Leakage Flow in a High-Pressure Turbine Stage of Low-Aspect Ratio
,”
Proc. IMechE Part C: J. Mech. Eng. Sci.
,
232
(
20
), pp.
3708
3721
.
29.
Zhang
,
B.
,
Qiang
,
X.
,
Teng
,
J.
, and
Lu
,
S.
,
2019
, “
Unsteady Passing Wake Effects on Turbine Blade Tip Aerodynamic and Aerothermal Performance With Film Cooling
,” ASME Paper No. GT2019-90207.
30.
Jiang
,
S.
,
Li
,
Z.
,
Li
,
J.
, and
Song
,
L.
,
2020
, “
Effects of the Novel Rib Layouts on the Tip Leakage Flow Pattern and Heat Transfer Performance of Turbine Blade
,”
Proc. IMechE Part G: J. Aerospace Eng.
,
234
(
8
), pp.
1446
1459
.
31.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(4), pp.
648
657
.
32.
Kwak
,
J. S.
,
Ahn
,
J.
, and
Han
,
J. C.
,
2004
, “
Effects of Rim Location, Rim Height, and Tip Clearance on the Tip and Near Tip Region Heat Transfer of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5651
5663
.
33.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2017
, “
Investigations Into Heat Transfer and Film Cooling Effect on a Squealer-Winglet Blade Tip
,”
Int. J. Heat Mass Transfer
,
115
, pp.
955
978
.
34.
Zhou
,
Z.
,
Chen
,
S.
, and
Wang
,
S.
,
2018
, “
Aerodynamic Optimization of a Winglet-Cavity Tip in a High-Pressure Axial Turbine Cascade
,”
Proc. IMechE Part G: J. Aerospace Eng.
,
232
(
4
), pp.
649
663
.
You do not currently have access to this content.