Abstract

The choice of heat transfer fluids (HTFs) significantly dictates the thermal efficiency of the solar power plant. Presently, molten salt is widely used choice owing to its phase, low cost, and non-toxic nature. Along with other alternatives like liquid metals and multiphase fluids, these HTFs are limited to peak operating temperatures ranging from 300 to 550 °C. With the introduction of dense particle suspensions as an HTF, the highest operating temperatures in a solar thermal power plant can reach up to 700 °C, offering considerable scope for improving thermal efficiency. Due to the higher average specific heat as compared to the alternatives, CO2 is a promising working fluid in the considered range of moderately high operating temperatures. The cost of the components and size of the power block make the transcritical CO2 cycle an attractive alternative. The present work analyzes the theoretical efficiency of the proposed cycle, with the peak operating temperature ranging from 550 °C to 700 °C. The effects of the variation in the lower operating pressure and the condensation temperature have also been analyzed. It is observed that thermodynamic efficiencies as high as 40% can be reached at the maximum operating temperature. The optimum combination of the lower operating pressure and the condensation temperature is also noted.

References

1.
Santos
,
J. J.
,
Palacio
,
J. C.
,
Reyes
,
A. M.
,
Carvalho
,
M.
,
Freire
,
A. J.
, and
Barone
,
M. A.
,
2018
, “Concentrating Solar Power,”
Advances in Renewable Energies and Power Technologies
,
I.
Yahyaoui
, ed.,
Elsevier
,
New York
, pp.
373
402
.
2.
Turchi
,
C. S.
,
Vidal
,
J.
, and
Bauer
,
M.
,
2018
, “
Molten Salt Power Towers Operating at 600–650 °C: Salt Selection and Cost Benefits
,”
Sol. Energy
,
164
, pp.
38
46
.
3.
Lorenzin
,
N.
, and
Abanades
,
A.
,
2016
, “
A Review on the Application of Liquid Metals as Heat Transfer Fluid in Concentrated Solar Power Technologies
,”
Int. J. Hydrogen Energy
,
41
(
17
), pp.
6990
6995
.
4.
García-Triñanes
,
P.
,
Seville
,
J.
,
Ansart
,
R.
,
Benoit
,
H.
,
Leadbeater
,
T.
, and
Parker
,
D.
,
2018
, “
Particle Motion and Heat Transfer in an Upward-Flowing Dense Particle Suspension: Application in Solar Receivers
,”
Chem. Eng. Sci.
,
177
, pp.
313
322
.
5.
Pacio
,
J.
, and
Wetzel
,
T.
,
2013
, “
Assessment of Liquid Metal Technology Status and Research Paths for Their Use as Efficient Heat Transfer Fluids in Solar Central Receiver Systems
,”
Sol. Energy
,
93
, pp.
11
22
.
6.
Benoit
,
H.
,
López
,
I. P.
,
Gauthier
,
D.
,
Sans
,
J.-L.
, and
Flamant
,
G.
,
2015
, “
On-Sun Demonstration of a 750 C Heat Transfer Fluid for Concentrating Solar Systems: Dense Particle Suspension in Tube
,”
Sol. Energy
,
118
, pp.
622
633
.
7.
Spelling
,
J.
,
Gallo
,
A.
,
Romero
,
M.
, and
Gonzalez-Aguilar
,
J.
,
2015
, “
A High-Efficiency Solar Thermal Power Plant Using a Dense Particle Suspension as the Heat Transfer Fluid
,”
Energy Procedia
,
69
, pp.
1160
1170
.
8.
Flamant
,
G.
, and
Hemanti
,
M.
,
2012
, “
Solar Energy Collecting Device
,” FR2966567, filed Oct. 20, 2010, and issued April 27.
9.
Zhang
,
H.
,
Benoit
,
H.
,
Perez-Lopèz
,
I.
,
Flamant
,
G.
,
Tan
,
T.
, and
Baeyens
,
J.
,
2017
, “
High-Efficiency Solar Power Towers Using Particle Suspensions as Heat Carrier in the Receiver and in the Thermal Energy Storage
,”
Renew. Energy
,
111
, pp.
438
446
.
10.
Ansart
,
R.
,
García-Triñanes
,
P.
,
Boissière
,
B.
,
Benoit
,
H.
,
Seville
,
J. P.
, and
Simonin
,
O.
,
2017
, “
Dense Gas-Particle Suspension Upward Flow Used as Heat Transfer Fluid in Solar Receiver: Pept Experiments and 3d Numerical Simulations
,”
Powder Technol.
,
307
, pp.
25
36
.
11.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2021
,
Thermal Energy Storage Systems and Applications
,
John Wiley & Sons
,
West Sussex, UK
, pp.
83
190
.
12.
Nemś
,
M.
,
Nemś
,
A.
,
Kasperski
,
J.
, and
Pomorski
,
M.
,
2017
, “
Thermo-Hydraulic Analysis of Heat Storage Filled With the Ceramic Bricks Dedicated to the Solar Air Heating System
,”
Materials
,
10
(
8
), p.
940
.
13.
Tiwari
,
V.
,
Rai
,
A. C.
, and
Srinivasan
,
P.
,
2021
, “
Parametric Analysis and Optimization of a Latent Heat Thermal Energy Storage System for Concentrated Solar Power Plants Under Realistic Operating Conditions
,”
Renew. Energy
,
174
, pp.
305
319
.
14.
Pan
,
L.
,
Li
,
B.
,
Shi
,
W.
, and
Wei
,
X.
,
2019
, “
Optimization of the Self-Condensing CO2 Transcritical Power Cycle Using Solar Thermal Energy
,”
Appl. Energy
,
253
, p.
113608
.
15.
Pitie
,
F.
,
Zhao
,
C.
,
Baeyens
,
J.
,
Degrève
,
J.
, and
Zhang
,
H.
,
2013
, “
Circulating Fluidized Bed Heat Recovery/Storage and Its Potential to Use Coated Phase-Change-Material (PCM) Particles
,”
Appl. Energy
,
109
, pp.
505
513
.
16.
Reyes-Belmonte
,
M. A.
,
Sebastián
,
A.
,
González Aguilar
,
J.
, and
Romero
,
M.
,
2017
, “
Performance Comparison of Different Thermodynamic Cycles for an Innovative Central Receiver Solar Power Plant
,”
SolarPACES Conference 2016
,
Abu Dhabi, UAE
,
Oct. 11–14
, p.
160024
.
17.
Garg
,
P.
,
Srinivasan
,
K.
,
Dutta
,
P.
, and
Kumar
,
P.
,
2014
, “
Comparison of CO2 and Steam in Transcritical Rankine Cycles for Concentrated Solar Power
,”
Energy Procedia
,
49
, pp.
1138
1146
.
18.
Kim
,
Y.
,
Kim
,
C.
, and
Favrat
,
D.
,
2012
, “
Transcritical or Supercritical CO2 Cycles Using Both Low- and High-Temperature Heat Sources
,”
Energy
,
43
(
1
), pp.
402
415
.
19.
Mahdavi
,
N.
, and
Khalilarya
,
S.
,
2019
, “
A Novel Method for Assessment of Pinch Point Characteristics of Heat Exchangers With Different Combinations of Pure Fluid and Binary Mixture as Hot and Cold Streams
,”
Energy Convers. Manage.
,
181
, pp.
342
358
.
20.
MATLAB
,
2021
,
Version 9.10.0 (R2021a)
,
The MathWorks Inc.
,
Natick, MA
.
21.
Huber
,
M. L.
,
Sykioti
,
E.
,
Assael
,
M. J.
, and
Perkins
,
R. A.
,
2016
, “
Reference Correlation of the Thermal Conductivity of Carbon Dioxide From the Triple Point to 1100
K and up to 200 MPa
,”
J. Phys. Chem. Ref. Data
,
45
(
1
), p.
013102
.
22.
Laesecke
,
A.
, and
Muzny
,
C. D.
,
2017
, “
Reference Correlation for the Viscosity of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
46
(
1
), p.
013107
.
23.
Luettmer-Strathmann
,
J.
,
Sengers
,
J.
, and
Olchowy
,
G.
,
1995
, “
Non-Asymptotic Critical Behavior of the Transport Properties of Fluids
,”
J. Chem. Phys.
,
103
(
17
), pp.
7482
7501
.
24.
Vesovic
,
V.
,
Wakeham
,
W.
,
Olchowy
,
G.
,
Sengers
,
J.
,
Watson
,
J.
, and
Millat
,
J.
,
1990
, “
The Transport Properties of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
19
(
3
), pp.
763
808
.
25.
Fenghour
,
A.
,
Wakeham
,
W. A.
, and
Vesovic
,
V.
,
1998
, “
The Viscosity of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
27
(
1
), pp.
31
44
.
26.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2009
, “
Optimization of Recompression s-CO2 Power Cycle With Reheating
,”
Energy Convers. Manage.
,
50
(
8
), pp.
1939
1945
.
You do not currently have access to this content.