Abstract

Increases in travel speeds and traffic density in railway sector impose challenges on the modern disk-pad brake systems such as higher temperatures and stresses resulting in cracks/hot spots and a degraded system performance. The prediction of disk thermal behavior under challenging conditions has become an important engineering issue. In this study, a model is developed using the finite difference method with realistic time-dependent boundary conditions and different experimental convection correlations with non-uniform time-step size features. A previous numerical/experimental study on the thermal behavior of railway disk brake is partly adopted and enhanced. The results of the developed model agree well with the results of the previous study. A practical prediction method for thermal stresses in the disk is applied using the axial temperature distributions at several time instants from locations with highest temperature. Apart from that, same configuration of the disk with the pad is modeled in simcenter star-ccm+ which is a well-validated commercial computational fluid dynamics software to compare the results and computation times with that of the developed model. Using this model, an investigation has been conducted on the effect of temperature-dependent material properties on thermal behavior of the disk. The developed numerical model can simulate the conditions experienced by a railway disk in a relatively new standard (EN 14535-3) considering the transient thermal behavior and axial thermal stress distribution with relatively low computational time and reasonable accuracy. Also, in this study, valuable insights are obtained on the effect of variable thermal properties of the disk and convection correlations on the disk thermal behavior.

References

1.
Gfatter
,
G.
,
Berger
,
P.
,
Krause
,
G.
, and
Vohla
,
G.
,
2003
,
Grundlagen der Bremstechnik (Basics of Brake Technology)
,
Knorr-Bremse AG
,
Munich
.
2.
Kim
,
D. J.
,
Lee
,
Y. M.
,
Park
,
J. S.
, and
Seok
,
C. S.
,
2008
, “
Thermal Stress Analysis for a Disk Brake of Railway Vehicles With Consideration of the Pressure Distribution on a Frictional Surface
,”
Mater. Sci. Eng. A
,
483–484
, pp.
456
459
.
3.
Nejat
,
A.
,
Aslani
,
M.
,
Mirzakhalili
,
E.
, and
Najian Asl
,
R.
,
2011
, “
Heat Transfer Enhancement in Ventilated Brake Disk Using Double Airfoil Vanes
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
045001
.
4.
Karbalaei Mehdi
,
J.
,
Nejat
,
A.
, and
Shariat Panahi
,
M.
,
2018
, “
Heat Transfer Improvement in Automotive Brake Disks Via Shape Optimization of Cooling Vanes Using Improved TPSO Algorithm Coupled With Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011013
.
5.
Grzes
,
P.
,
Oliferuk
,
W.
,
Adamowicz
,
A.
,
Kochanowski
,
K.
,
Wasilewski
,
P.
, and
Yevtushenko
,
A. A.
,
2016
, “
The Numerical-Experimental Scheme for the Analysis of Temperature Field in a Pad-Disc Braking System of a Railway Vehicle at Single Braking
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
1
6
.
6.
Atkins
,
M. D.
,
Kienhöfer
,
F. W.
,
Kang
,
K.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2021
, “
Cooling Mechanisms in a Rotating Brake Disc With a Wire-Woven-Bulk Diamond Cellular Core
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041006
.
7.
Zewang
,
Y.
,
Chun
,
T.
,
Mengling
,
W.
,
Jiajun
,
Z.
, and
Chao
,
C.
,
2021
, “
Modeling and Model Validation of Thermal Behavior of Railway Disc During Single Braking
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051017
.
8.
Wiesche
,
S. A. D.
,
2002
, “
Heat Transfer and Thermal Behaviour of a Rotating Disk Passed by a Planar Air Stream
,”
Forsch. Ingenieurwes.
,
67
(
4
), pp.
161
174
.
9.
EN 14535-3
,
2015
,
Railway Applications—Brake Discs for Railway Rolling Stock—Part 3: Brake Discs, Performance of the Disc and the Friction Couple, Classification
,
European Committee for Standardization
,
Brussels
.
10.
UIC Code 541-3
,
2017
,
Brakes—Disc Brakes and Their Applications—General Conditions for the Certification of Brake Parts
,
International Union of Railways
,
Paris
.
11.
Gao
,
C. H.
,
Huang
,
J. M.
,
Lin
,
X. Z.
, and
Tang
,
X. S.
,
2007
, “
Stress Analysis of Thermal Fatigue Fracture of Brake Disks Based on Thermomechanical Coupling
,”
ASME J. Tribol.
,
129
(
3
), pp.
536
543
.
12.
Kim
,
D.-J.
,
Seok
,
C.-S.
,
Koo
,
J.-M.
,
We
,
W.-T.
,
Goo
,
B.-C.
, and
Won
,
J.-I.
,
2009
, “
Fatigue Life Assessment for Brake Disc of Railway Vehicle
,”
Fatigue Fract. Eng. Mater. Struct.
,
33
(
1
), pp.
37
42
.
13.
Limpert
,
R.
,
1972
, “
An Investigation of Thermal Conditions Leading to Surface Rupture of Cast Iron Rotors
,”
SAE Trans.
,
81
(
3
), pp.
1507
1520
. https://www.jstor.org/stable/44722815
14.
Boley
,
B. A.
, and
Weiner
,
J. H.
,
1960
,
Theory of Thermal Stresses
,
Dover Publications Inc.
,
New York
.
15.
Siemens Digital Industries Software
,
2021
, “
Simcenter STAR-CCM+, version 2021.1
,” https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
16.
Harris
,
C. R.
,
Millman
,
K. J.
,
van der Walt
,
S. J.
,
Gommers
,
R.
,
Virtanen
,
P.
,
Cournapeau
,
D.
,
Wieser
,
E.
, et al
,
2020
, “
Array Programming With NumPy
,”
Nature
,
585
(
7825
), pp.
357
362
.
17.
Lam
,
S. K.
,
Pitrou
,
A.
, and
Seibert
,
S.
,
2015
, “
Numba: A LLVM-Based Python JIT Compiler
,”
LLVM‘15: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC
,
New York
,
November
, pp.
1
6
.
18.
Özişik
,
M. N.
,
2017
,
Finite Difference Methods in Heat Transfer
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
19.
Kreith
,
F.
,
Manglik
,
R. M.
, and
Bohn
,
M. S.
,
2011
,
Principles of Heat Transfer
, 7th ed.,
Global Engineering
,
Stamford, CT
.
20.
Celik
,
I.
,
1993
, “
Numerical Uncertainty in Fluid Flow Calculations: Needs for Future Research
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
194
195
.
21.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
,
1986
, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
108
(
1
), p.
2
.
22.
Aus der Wiesche
,
S.
, and
Helcig
,
C.
,
2016
,
Convective Heat Transfer From Rotating Disks Subjected to Streams of Air
,
Springer
,
Cham
.
23.
Trinkl
,
C. M.
,
Bardas
,
U.
,
Weyck
,
A.
, and
Aus Der Wiesche
,
S.
,
2011
, “
Experimental Study of the Convective Heat Transfer From a Rotating Disc Subjected to Forced Air Streams
,”
Int. J. Therm. Sci.
,
50
(
1
), pp.
73
80
.
24.
Popiel
,
C. Z. O.
, and
Bogusławski
,
L.
,
1975
, “
Local Heat-Transfer Coefficients on the Rotating Disk in Still Air
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
167
170
.
25.
Dorfman
,
L. A.
,
1964
,
Hydrodynamic Resistance and the Heat Loss of Rotating Solids
,
Oliver & Boyd
,
Edinburgh
.
26.
Rashid
,
A.
, and
Strömberg
,
N.
,
2013
, “
Sequential Simulation of Thermal Stresses in Disc Brakes for Repeated Braking
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
227
(
8
), pp.
919
929
.
27.
Baron Saiz
,
C.
,
Ingrassia
,
T.
,
Nigrelli
,
V.
, and
Ricotta
,
V.
,
2015
, “
Thermal Stress Analysis of Different Full and Ventilated Disc Brakes
,”
Frattura ed Integrita Strutturale
,
9
(
34
), pp.
608
621
.
28.
Adamowicz
,
A.
,
2015
, “
Axisymmetric FE Model to Analysis of Thermal Stresses in a Brake Disk
,”
J. Theor. Appl. Mech.
,
53
(
2
), pp.
357
370
.
29.
Jiregna
,
I. T.
, and
Lemu
,
H. G.
,
2021
, “
Thermal Stress Analysis of Disc Brake Using Analytical and Numerical Methods
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1201
(
1
), p.
012033
.
30.
Sawczuk
,
W.
,
2018
, “
Analytical Model Coefficient of Friction (COF) of Rail Disc Brake on the Basis of Multi-Phase Stationary Tests
,”
Eksploatacja i Niezawodnosc—Maintenance and Reliability
,
20
(
1
), pp.
57
67
.
You do not currently have access to this content.