Abstract

A comparative assessment between two modes for ammonia–water absorption, microchannel falling-film absorption and microscale convective-flow, is presented in this study. The microchannel falling-film absorber consists of an array of short microchannel tubes arranged parallel to each other and stacked in several vertical rows to provide the necessary transfer area. Dilute solution flows in a falling-film mode around these cooled tubes while absorbing the counter-current vapor. The microscale convective-flow absorber consists of an array of parallel, aligned alternating sheets with integral microscale features, enclosed between cover plates. Several absorber variants were designed for each flow configuration, and optimal prototypes were identified based on design and operational constraints for a 10.5 kW cooling capacity chiller. Comparative assessments of heat and mass transfer characteristics are presented while accounting for fabrication considerations. This work will guide the development of miniaturized absorption heat pump components.

References

1.
Beutler
,
A.
,
Ziegler
,
F.
, and
Alefeld
,
G.
,
1996
, “
Falling Film Absorption With Solutions of a Hydroxide Mixture
,”
Proceedings of the International Sorption Heat Pump Conference
,
Montreal, Canada
,
Sept. 17–20
, pp.
303
309
.
2.
Kini
,
G.
,
Chandrasekaran
,
S.
,
Tambasco
,
M.
, and
Garimella
,
S.
,
2020
, “
A Residential Absorption Chiller for High Ambient Temperatures
,”
Int. J. Refrig.
,
120
, pp.
31
38
.
3.
Perez-Blanco
,
H.
,
1988
, “
A Model of an Ammonia–Water Falling Film Absorber
,”
ASHRAE Trans.
, pp.
467
483
.
4.
Kwon
,
K.
, and
Jeong
,
S.
,
2004
, “
Effect of Vapor Flow on the Falling-Film Heat and Mass Transfer of the Ammonia/Water Absorber
,”
Int. J. Refrig.
,
27
(
8
), pp.
955
964
.
5.
Lee
,
S.
,
Bohra
,
L. K.
,
Garimella
,
S.
, and
Nagavarapu
,
A. K.
,
2012
, “
Measurement of Absorption Rates in Horizontal-Tube Falling-Film Ammonia–Water Absorbers
,”
Int. J. Refrig.
,
35
(
3
), pp.
613
632
.
6.
Haselden
,
G. G.
, and
Malaty
,
S. A.
,
1959
, “
Heat and Mass Transfer Accompanying the Absorption of Ammonia in Water
,”
Inst. Chem. Engineers—Trans.
,
37
(
3
), pp.
137
146
.
7.
Chandrasekaran
,
S.
,
Hughes
,
M.
,
Kini
,
G.
, and
Garimella
,
S.
,
2021
, “
A Microchannel Shell-and-Tube Absorber for Ammonia–Water Absorption
,”
Appl. Therm. Eng.
,
185
, p.
116321
.
8.
Herbine
,
G. S.
, and
Perez-Blanco
,
H.
,
1995
, “
Model of an Ammonia–Water Bubble Absorber
,”
Proceedings of the ASHRAE Annual Meeting
,
Chicago, IL,
,
Jan. 28–Feb. 1
, pp.
1324
1332
.
9.
Fernández-Seara
,
J.
,
Sieres
,
J.
,
Rodríguez
,
C.
, and
Vázquez
,
M.
,
2005
, “
Ammonia–Water Absorption in Vertical Tubular Absorbers
,”
Int. J. Therm. Sci.
,
44
(
3
), pp.
277
288
.
10.
Ferreira
,
C. A. I.
,
Keizer
,
C.
, and
Machielsen
,
C. H. M.
,
1984
, “
Heat and Mass Transfer in Vertical Tubular Bubble Absorbers for Ammonia–Water Absorption Refrigeration Systems
,”
Int. J. Refrig.
,
7
(
6
), pp.
348
357
.
11.
Kim
,
H. Y.
,
Saha
,
B. B.
, and
Koyama
,
S.
,
2003
, “
Development of a Slug Flow Absorber Working With Ammonia–Water Mixture: Part II—Data Reduction Model for Local Heat and Mass Transfer Characterization
,”
Int. J. Refrig.
,
26
(
6
), pp.
698
706
.
12.
Kim
,
H. Y.
,
Saha
,
B. B.
, and
Koyama
,
S.
,
2003
, “
Development of a Slug Flow Absorber Working With Ammonia–Water Mixture: Part I—Flow Characterization and Experimental Investigation
,”
Int. J. Refrig.
,
26
(
5
), pp.
508
515
.
13.
Kang
,
Y. T.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
2000
, “
Analytical Investigation of Two Different Absorption Modes: Falling Film and Bubble Types
,”
Int. J. Refrig.
,
23
(
6
), pp.
430
443
.
14.
Castro
,
J.
,
Oliet
,
C.
,
Rodríguez
,
I.
, and
Oliva
,
A.
,
2009
, “
Comparison of the Performance of Falling Film and Bubble Absorbers for Air-Cooled Absorption Systems
,”
Int. J. Therm. Sci.
,
48
(
7
), pp.
1355
1366
.
15.
Lee
,
K. B.
,
Chun
,
B. H.
,
Lee
,
J. C.
,
Hyun
,
J. C.
, and
Kim
,
S. H.
,
2002
, “
Comparison of Heat and Mass Transfer in Falling Film and Bubble Absorbers of Ammonia–Water
,”
Exp. Heat Transf.
,
15
(
3
), pp.
191
205
.
16.
Kang
,
Y. T.
, and
Christensen
,
R. N.
,
1994
, “
Development of a Counter-Current Model for a Vertical Fluted Tube GAX Absorber
,”
Proceedings of the International Absorption Heat Pump Conference
,
New Orleans, LA
,
Jan. 19–21
, pp.
7
16
.
17.
Garrabrant
,
M. A.
, and
Christensen
,
R. N.
,
1997
, “
Modeling and Experimental Verification of a Perforated Plate-Fin Absorber for Aqua-Ammonia Absorption Systems
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Dallas, TX
,
Nov. 16–21
, pp.
337
347
.
18.
Christensen
,
R. N.
,
Garimella
,
S.
,
Kang
,
Y. T.
, and
Garrabrant
,
M. A.
,
1998
, “Perforated Fin Heat and Mass Transfer Device,” U.S. Patent No. 5,704,417.
19.
Goel
,
N.
, and
Goswami
,
D. Y.
,
2005
, “
A Compact Falling Film Absorber
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
9
), pp.
957
965
.
20.
Goel
,
N.
, and
Goswami
,
D. Y.
,
2007
, “
Experimental Verification of a New Heat and Mass Transfer Enhancement Concept in a Microchannel Falling Film Absorber
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
2
), pp.
154
161
.
21.
Garimella
,
S.
,
1999
, “
Miniaturized Heat and Mass Transfer Technology for Absorption Heat Pumps
,”
Proceedings of the International Sorption Heat Pump Conference
,
Munich, Germany
, pp.
661
670
.
22.
Meacham
,
J. M.
, and
Garimella
,
S.
,
2002
, “
Experimental Demonstration of a Prototype Microchannel Absorber for Space-Conditioning Systems
,”
Proceedings of the International Sorption Heat Pump Conference
,
Shanghai, China
, pp.
270
276
.
23.
Meacham
,
J. M.
, and
Garimella
,
S.
,
2003
, “
Modeling of Local Measured Heat and Mass Transfer Variations in a Microchannel Ammonia–Water Absorber
,”
ASHRAE Trans.
, pp.
412
422
.
24.
Meacham
,
J. M.
, and
Garimella
,
S.
,
2004
, “
Ammonia–Water Absorption Heat and Mass Transfer in Microchannel Absorbers With Visual Confirmation
,”
ASHRAE Transactions
, pp.
525
532
.
25.
Determan
,
M. D.
, and
Garimella
,
S.
,
2011
, “
Ammonia–Water Desorption Heat and Mass Transfer in Microchannel Devices
,”
Int. J. Refrig.
,
34
(
5
), pp.
1197
1208
.
26.
Nagavarapu
,
A.
, and
Garimella
,
S.
,
2011
, “
Falling-Film Absorption Around Microchannel Tube Banks
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Denver, CO
,
Nov. 11–17
, p.
12
.
27.
Garimella
,
S.
,
Determan
,
M. D.
,
Meacham
,
J. M.
,
Lee
,
S.
, and
Ernst
,
T. C.
,
2011
, “
Microchannel Component Technology for System-Wide Application in Ammonia/Water Absorption Heat Pumps
,”
Int. J. Refrig.
,
34
(
5
), pp.
1184
1196
.
28.
Merrill
,
T.
,
Setoguchi
,
T.
, and
Perez-Blanco
,
H.
,
1994
, “
Compact Bubble Absorber Design and Analysis
,”
Proceedings of the International Sorption Heat Pump Conference
,
New Orleans, LA
,
Jan. 19–21
, pp.
217
223
.
29.
Chen
,
J.
,
Chang
,
H.
, and
Chen
,
S.-R.
,
2006
, “
Simulation Study of a Hybrid Absorber-Heat Exchanger Using Hollow Fiber Membrane Module for the Ammonia–Water Absorption Cycle
,”
Int. J. Refrig.
,
29
(
6
), pp.
1043
1052
.
30.
Jenks
,
J.
, and
Narayanan
,
V.
,
2008
, “
Effect of Channel Geometry Variations on the Performance of a Constrained Microscale-Film Ammonia–Water Bubble Absorber
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
11
), p.
112402
.
31.
Determan
,
M. D.
, and
Garimella
,
S.
,
2011
, “
Design, Fabrication, and Experimental Demonstration of a Microscale Monolithic Modular Absorption Heat Pump
,”
Appl. Therm. Eng.
,
47
, pp.
119
125
.
32.
Nagavarapu
,
A. K.
, and
Garimella
,
S.
,
2011
, “
Design of Microscale Heat and Mass Exchangers for Absorption Space Conditioning Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021005
.
33.
Sehgal
,
S.
,
Alvarado
,
J. L.
,
Hassan
,
I. G.
, and
Kadam
,
S. T.
,
2021
, “
A Comprehensive Review of Recent Developments in Falling-Film, Spray, Bubble and Microchannel Absorbers for Absorption Systems
,”
Renewable Sustainable Energy Rev.
,
142
, p.
110807
.
34.
Nagavarapu
,
A. K.
, and
Garimella
,
S.
,
2019
, “
Experimentally Validated Models for Falling-Film Absorption Around Microchannel Tube Banks: Hydrodynamics
,”
Int. J. Heat Mass Transfer
,
134
, pp.
815
827
.
35.
Nagavarapu
,
A. K.
, and
Garimella
,
S.
,
2019
, “
Experimentally Validated Models for Falling-Film Absorption Around Microchannel Tube Banks: Heat and Mass Transfer
,”
Int. J. Heat Mass Transfer
,
139
, pp.
303
316
.
36.
Nagavarapu
,
A. K.
,
2012
, “
Binary Fluid Heat and Mass Exchange at the Microscale in Internal and External Ammonia–Water Absorption
,”
Ph.D. dissertation
,
Georgia Institute of Technology
,
Atlanta, GA
.
37.
Shah
,
M. M.
,
1979
, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
547
556
.
You do not currently have access to this content.