Abstract

A salt gradient solar pond (SGSP) acts as an eco-friendly and cost-efficient device for storing thermal energy storage. It is crucial to enrich the efficiency of the SGSP to boost its thermal energy storage. It can be efficaciously achieved with the application of salt mixtures, reflectors, and by the usage of a glazed layer. This current study investigates the hexagonal composite salinity gradient solar pond (HCSGSP) augmented with a dual inclined reflector and a triple-layer transparent cover. A micro-solar pond having a hexagonal cross section was fabricated and experimented at Coimbatore, India, having a datum and surface area of 1 m and 0.679 m2, respectively. The novel usage of composite salt (sodium chloride 30%, magnesium chloride 10%, and potassium chloride 60%) led to the enhancement of the daily average temperature of pond. The pond’s upper portion was packed with a triple-layer glazed cover which shows an uplift of thermal energy and the pond is provided with inclined reflectors made of plywood fixed with mirrors on the east–west direction. The purpose of the mirrors is to increase the solar radiation intensity during the diurnal period and also it acts as an insulator which minimizes the heat losses during the nocturnal period. Energy balance numerical equations were formulated for all layers in the pond and temperature variation was determined mathematically and experimentally. The maximum thermal efficiencies of the top convective, middle non-convective, and bottom convective layers of reformed solar pond were measured to be 23.44%, 30.68%, and 35.63%, respectively, whereas they were 1.32%, 12.32%, and 23.44%, respectively, in the case of conventional pond. Furthermore, the research provides insight into the impact of shading owing to sidewalls, which has a significant impact on the incident solar radiation and storage of thermal energy in the novel solar pool.

References

1.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
,
2013
, “
Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021011
.
2.
Sarabia
,
A.
,
Meza
,
F.
, and
Suárez
,
F.
,
2018
, “
Use of Fiber-Optic Distributed Temperature Sensing to Investigate Erosion of the Non-Convective Zone in Salt-Gradient Solar Ponds
,”
Sol. Energy
,
170
, pp.
499
509
.
3.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar Pond Coupled With Forced Circulation Crystallizer as Major Stages of Proposed Zero Discharge Desalination Process
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
2
), p.
021002
.
4.
Silva
,
C.
,
González
,
D.
, and
Suárez
,
F.
,
2017
, “
An Experimental and Numerical Study of Evaporation Reduction in a Salt-Gradient Solar Pond Using Floating Discs
,”
Sol. Energy
,
142
, pp.
204
214
.
5.
Amouei Torkmahalleh
,
M.
,
Askari
,
M.
,
Gorjinezhad
,
S.
,
Eroğlu
,
D.
,
Obaidullah
,
M.
,
Habib
,
A. R.
,
Godelek
,
S.
,
Kadyrov
,
S.
,
Kahraman
,
O.
,
Pakzad
,
N. Z.
, and
Ahmadi
,
G.
,
2017
, “
Key Factors Impacting Performance of a Salinity Gradient Solar Pond Exposed to Mediterranean Climate
,”
Sol. Energy
,
142
, pp.
321
329
.
6.
Khalilian
,
M.
,
2017
, “
Assessment of the Overall Energy and Exergy Efficiencies of the Salinity Gradient Solar Pond With Shading Effect
,”
Sol. Energy
,
158
, pp.
311
320
.
7.
Sayer
,
A. H.
,
Al-hussaini
,
H.
, and
Campbell
,
A. N.
,
2017
, “
Experimental Analysis of the Temperature and Concentration Profiles in a Salinity Gradient Solar Pond With, and Without a Liquid Cover to Suppress Evaporation
,”
Sol. Energy
,
155
, pp.
1354
1365
.
8.
Dhindsa
,
G. S.
, and
Mittal
,
M. K.
,
2018
, “
An Investigation of Double-Glass-Covered Trapezoidal Salt-Gradient Solar Pond Coupled With Reflector
,”
Int. J. Green Energy
,
15
(
2
), pp.
57
68
.
9.
Khalilian
,
M.
,
2018
, “
Experimental and Numerical Investigations of the Thermal Behavior of Small Solar Ponds With Wall Shading Effect
,”
Sol. Energy
,
159
, pp.
55
65
.
10.
Assari
,
M. R.
,
Tahan
,
M. H.
,
Jafar Gholi Beik
,
A.
, and
Basirat Tabrizi
,
H.
,
2020
, “
Experimental Study on Thermal Behavior of New Mixed Medium Phase Change Material for Improving Productivity on Salt Gradient Solar Pond
,”
J. Therm. Anal. Calorim.
11.
Sayer
,
A. H.
,
Al-hussaini
,
H.
, and
Campbell
,
A. N.
,
2017
, “
New Comprehensive Investigation on the Feasibility of the Gel Solar Pond, and a Comparison With the Salinity Gradient Solar Pond
,”
Appl. Therm. Eng.
,
130
, pp.
672
683
.
12.
Verma
,
S.
, and
Das
,
R.
,
2019
, “
Wall Profile Optimisation of a Salt Gradient Solar Pond Using a Generalized Model
,”
Sol. Energy
,
184
, pp.
356
371
.
13.
Gaddala
,
U. M.
, and
Devanuri
,
J. K.
,
2020
, “
A Hybrid Decision-Making Method for the Selection of a Phase Change Material for Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041020
.
14.
Kumar
,
A.
, and
Das
,
R.
,
2021
, “
Effect of Peripheral Heat Conduction in Salt-Gradient Solar Ponds
,”
J. Energy Storage
,
33
, pp.
1
13
.
15.
Sathish
,
D.
, and
Jegadheeswaran
,
S.
,
2021
, “
Evolution and Novel Accomplishments of Solar Pond, Desalination and Pond Coupled to Desalination Systems: A Review
,”
J. Therm. Anal. Calorim.
16.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
, 4th ed.,
Wiley
,
Hoboken, NJ
.
17.
Bishop
,
R. C.
,
1983
, “
Superinsulated Batch Heaters for Freezing Climates
,”
Proceedings of the Eighth National Passive Solar Conference
,
Santa Fe, NMA
,
Sept. 7–9
, pp.
807
810
.
18.
Youcef-Ali
,
S.
,
2005
, “
Study and Optimization of the Thermal Performances of the Offset Rectangular Plate Fin Absorber Plates, With Various Glazing
,”
Renew. Energy
,
30
(
2
), pp.
271
280
.
19.
Zangrando
,
F.
,
1980
, “
A Simple Method to Establish Salt Gradient Solar Ponds
,”
Sol. Energy
,
25
(
5
), pp.
467
470
.
20.
Maru
,
H. C.
,
Dullea
,
J. F.
, and
Huang
,
V. S.
,
1976
, “
Molten Salt Thermal Energy Storage Systems: Salt Selection
,”
Institute of Gas Technology, Chicago Technical Report Project 8981
.
21.
Velmurugan
,
V.
,
Deenadayalan
,
C. K.
,
Vinod
,
H.
, and
Srithar
,
K.
,
2008
, “
Desalination of Effluent Using Fin Type Solar Still
,”
Energy
,
33
(
11
), pp.
1719
1727
.
22.
Kaufmann
,
D. W.
,
1960
,
Sodium Chloride
,
Reinhold Publishing Corp
,
New York
.
23.
Sayer
,
A. H.
,
Al-hussaini
,
H.
, and
Campbell
,
A. N.
,
2017
, “
An Analytical Estimation of Salt Concentration in the Upper and Lower Convective Zones of a Salinity Gradient Solar Pond With Either a Pond With Vertical Walls or Trapezoidal Cross Section
,”
Sol. Energy
,
158
, pp.
207
217
.
24.
Bozkurt
,
I.
, and
Karakilcik
,
M.
,
2015
, “
The Effect of Sunny Area Ratios on the Thermal Performance of Solar Ponds
,”
Energy Convers. Manage.
,
91
, pp.
323
332
.
25.
Sun
,
H.
,
Feistel
,
R.
,
Koch
,
M.
, and
Markoe
,
A.
,
2015
, “
New Equations for Density, Entropy, Heat Capacity, and Potential Temperature of a Saline Thermal Fluid
,”
Deep-Sea Res. Part I
,
55
(
10
), pp.
1304
1310
.
26.
Khalilian
,
M.
,
Shahrooz
,
M.
, and
Abbaszadeh
,
M.
,
2015
, “
Erroneous Equations Used to Calculate Evaporation and Radiation Heat Losses From UCZ Layer in Solar Ponds
,”
Sol. Energy
,
122
, pp.
1425
1428
.
27.
Karakilcik
,
M.
,
Dincer
,
I.
,
Bozkurt
,
I.
, and
Atiz
,
A.
,
2013
, “
Performance Assessment of a Solar Pond With and Without Shading Effect
,”
Energy Convers. Manage.
,
65
, pp.
98
107
.
28.
Bryantt
,
H. C.
, and
Colbeck
,
I. A. N.
,
1977
, “
A Solar Pond for London
,”
Sol. Energy
,
19
(
3
), pp.
321
322
.
29.
Murthy
,
G. R. R.
, and
Pandey
,
K. P.
,
2002
, “
Scope of Fertiliser Solar Ponds in Indian Agriculture
,”
Energy
,
27
(
2
), pp.
117
126
.
30.
Bozkurt
,
I.
,
Deniz
,
S.
,
Karakilcik
,
M.
, and
Dincer
,
I.
,
2015
, “
Performance Assessment of a Magnesium Chloride Saturated Solar Pond
,”
Renew. Energy
,
78
, pp.
35
41
.
You do not currently have access to this content.