Abstract

This study features a rotating, blade-shaped, two-pass cooling channel, which follows the contour and shape of realistic airfoils. Effects of two different 45-deg rib orientations on the heat transfer and pressure loss were investigated and discussed. The cross section and orientation with respect to rotation vary in the serpentine cooling channel. The first passage of the channel is oriented at 50 deg from the direction of rotation, and the second passage is angled at 105 deg. The radially outward first passage has an aspect ratio (AR) = 4:1. After a 180-deg blade-shaped tip turn, the coolant flows radially inward into the AR = 2:1 s passage. The copper plate method was applied to calculate average heat transfer coefficients in each region of the cooling channel. The 45 deg angled ribs with a profiled cross section are placed on the leading and trailing surfaces in two ways: unusual and criss-cross. The rib spacing is P/e = 10, and rib height is e/H = 0.16. In this study, the Reynolds number ranges from 10,000 to 45,000 in the first passage, resulting in Re = 16,000 to 73,000 in the second passage. The rotational speed varies from 0 to 400 rpm, corresponding to maximum rotation numbers of 0.38 and 0.15 in the first and second passages, respectively. From the results, the 45-deg usual and unusual ribs generally have higher heat transfer than the criss-cross ribs. However, the criss-cross ribs have the lowest pressure loss penalty among the three cases. Taking both heat transfer and pressure loss into account, the 45-deg unusual ribs have a higher thermal performance under the stationary condition while the criss-cross ribs are better than other rib orientations under rotating conditions. Thus, the 45-deg unusual and criss-cross ribs can be considered for applications in real engines. The heat transfer and pressure loss data in this study provide important information for internal cooling of gas turbine blades.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113001
.
2.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
2
), pp.
321
328
.
3.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
4.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.
5.
Lee
,
D. H.
,
Rhee
,
D.-H.
,
Kim
,
K. M.
,
Cho
,
H. H.
, and
Moon
,
H. K.
,
2009
, “
Detailed Measurement of Heat/Mass Transfer With Continuous and Multiple V-Shaped Ribs in Rectangular Channel
,”
J. Energy
,
34
(
11
), pp.
1770
1778
.
6.
Iacovides
,
H.
, and
Launder
,
B. E.
,
1991
, “
Parametric and Numerical Study of Fully Developed Flow and Heat Transfer in Rotating Rectangular Ducts
,”
ASME J. Turbomach.
,
113
(
3
), pp.
331
338
.
7.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
912
920
.
8.
Taslim
,
M. E.
,
Bondi
,
L. A.
, and
Kercher
,
D. M.
,
1991
, “
An Experimental Investigation of Heat Transfer in an Orthogonally Rotating Channel Roughened With 45 deg Criss-Cross Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
346
353
.
9.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2002
, “
Heat Transfer in Rotating Rectangular Cooling Channels AR = 4 With Angled Ribs
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
4
), pp.
617
625
.
10.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
1
), pp.
164
174
.
11.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2005
, “
Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4:1) With Angled Ribs
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
378
387
.
12.
Lei
,
J.
,
Han
,
J. C.
, and
Huh
,
M.
,
2012
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR = 2:1) at High Rotation Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
9
), p.
091901
.
13.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J. C.
,
2011
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.
14.
Metzger
,
D. E.
, and
Sahm
,
M. K.
,
1986
, “
Heat Transfer Around Sharp 180-deg Turns in Smooth Rectangular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
108
(
3
), pp.
500
506
.
15.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
,
1988
, “
Local Heat/Mass Transfer Distributions Around Sharp 180 deg Turns in Two-Pass Smooth and Rib-Roughened Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
1
), pp.
91
98
.
16.
Chyu
,
M. K.
,
1991
, “
Regional Heat Transfer in Two-Pass and Three-Pass Passages With 180-deg Sharp Turns
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
1
), pp.
63
70
.
17.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
596
.
18.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2525
2537
.
19.
Liou
,
T. M.
, and
Chen
,
C. C.
,
1999
, “
Heat Transfer in a Rotating Two-Pass Smooth Passage With a 180 deg Rectangular Turn
,”
Int. J. Heat Mass Transfer
,
42
(
2
), pp.
231
247
.
20.
Chen
,
A. F.
,
Shiau
,
C. C.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2019
, “
Heat Transfer in a Rotating Two-Pass Rectangular Channel Featuring a Converging Tip Turn With Various 45 deg Rib Coverage Designs
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061015
.
21.
Sahin
,
I.
,
Chen
,
A. F.
,
Shiau
,
C. C.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2019
, “
Effect of 45-deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio From 4:1 to 2:1
,” ASME Paper No. GT2019-90099.
22.
Chen
,
I. L.
,
Sahin
,
I.
,
Wright
,
L. M.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2020
, “
Heat Transfer in a Rotating, Two-Pass, Variable Aspect Ratio Cooling Channel With Profiled V-Shaped Ribs
,” ASME Paper No. GT2020-16216.
23.
Schüler
,
M.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2009
, “
Experimental Investigations of Pressure Loss and Heat Transfer in a 180deg Bend of a Ribbed Two-Pass Internal Cooling Channel With Engine-Similar Cross-Sections
,”
J. Power Energy
,
223
(
6
), pp.
709
719
.
24.
Schüler
,
M.
,
Dreher
,
H. M.
,
Neumann
,
S. O.
,
Weigand
,
B.
, and
Elfert
,
M.
,
2012
, “
Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-Similar Two-Pass Internal Cooling Channel With Smooth and Ribbed Walls
,”
ASME J. Turbomach.
,
134
(
2
), p.
021021
.
25.
Ekkad
,
S. V.
,
LeBlanc
,
C.
,
Lambert
,
T.
, and
Rajendran
,
V.
,
2011
, “
Detailed Heat Transfer Distributions in Engine Similar Cooling Channels for a Turbine Rotor Blade With Different Rib Orientations
,” ASME Paper No. GT2011-45254.
26.
Rallabandi
,
A.
,
Lei
,
J.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2014
, “
Heat Transfer Measurements in Rotating Blade–Shape Serpentine Coolant Passage With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
.
27.
Yang
,
S. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2015
, “
Heat Transfer in Rotating Serpentine Coolant Passage With Ribbed Walls at Low Mach Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011013
.
28.
Wright
,
L. M.
,
Yang
,
S. F.
,
Wu
,
H. W.
,
Han
,
J. C.
,
Lee
,
C. P.
,
Azad
,
S.
, and
Um
,
J.
,
2020
, “
Heat Transfer in a Rotating, Blade-Shaped Serpentine Cooling Passage With Discrete Ribbed Walls at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
1
), p.
012002
.
29.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2019
, “
Detailed Heat Transfer Coefficient Measurements on a Scaled Realistic Turbine Blade Internal Cooling System
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031015
.
30.
Chen
,
I. L.
,
Sahin
,
I.
,
Wright
,
L. M.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2022
, “
Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With a Variable Aspect Ratio
,”
ASME J. Turbomach.
,
144
(
2
), p.
021011
.
31.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.