Abstract

A comprehensive computational study for the assessment of a horizontal solar calciner is presented. The heat and mass transfer models that have been developed give valuable insight and enlighten the fundamental principles that rule the solar-aided CaCO3 decomposition. The obtained computational data are appropriately interpreted and serve as guidelines in order to establish the operational framework of the solar reactor. Additionally, this set of predictive models identifies the optimum values of the key parameters that boost the performance of the process. The models have been validated comparing the computational results with the experimental data and the calciner performance is evaluated, reaching 35.2% efficiency.

References

1.
Imhof
,
A.
,
1997
, “
Decomposition of Limestone in a Solar Reactor
,”
Renew. Energy
,
10
(
2–3
), pp.
239
246
.
2.
Craig
,
R. A.
,
2010
, “
Investigating the Use of Concentrated Solar Energy to Thermally Decompose Limestone
,”
Ph.D. thesis
,
The University of Adelaide
,
Adelaide, Australia
.
3.
Esence
,
T.
,
Guillot
,
E.
,
Tessonneaud
,
M.
,
Sans
,
J. L.
, and
Flamant
,
G.
,
2020
, “
Solar Calcination at Pilot Scale in a Continuous Flow Multistage Horizontal Fluidized Bed
,”
Sol. Energy
,
207
, pp.
367
378
.
4.
Schorcht
,
F.
,
Kourti
,
I.
,
Scalet
,
B. M.
,
Roudier
,
S.
, and
Sancho
,
L. D.
,
2013
, “Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide,” European Commission Joint Research Centre Institute for Prospective Technological Studies, Luxembourg.
5.
Flamant
,
G.
,
Hernandez
,
D.
,
Bonet
,
C.
, and
Traverse
,
J. P.
,
1980
, “
Experimental Aspects of the Thermochemical Conversion of Solar Energy; Decarbonation of CaCO3
,”
Sol. Energy
,
24
(
4
), pp.
385
395
.
6.
Meier
,
A.
,
Bonaldi
,
E.
,
Cella
,
G. M.
,
Lipinski
,
W.
,
Palumbo
,
R.
,
Steinfeld
,
A.
,
Wieckert
,
C.
, and
Wuillemin
,
D.
,
2002
, “
Towards the Industrial Solar Production of Lime
,” https://www.osti.gov/etdeweb/biblio/20277036
7.
Meier
,
A.
,
Bonaldi
,
E.
,
Cella
,
G. M.
,
Lipinski
,
W.
, and
Wuillemin
,
D.
,
2006
, “
Solar Chemical Reactor Technology for Industrial Production of Lime
,”
Sol. Energy
,
80
(
10
), pp.
1355
1362
.
8.
Tescari
,
S.
,
Moumin
,
G.
,
Bulfin
,
B.
,
de Oliveira
,
L.
,
Schaefer
,
S.
,
Overbeck
,
N.
,
Willsch
,
C.
, et al
,
2018
, “
Experimental and Numerical Analysis of a Solar Rotary Kiln for Continuous Treatment of Particle Material
,”
AIP Conf. Proc.
,
2033
(
1
), p.
130014
.
9.
Moumin
,
G.
,
Tescari
,
S.
,
Sundarraj
,
P.
,
de Oliveira
,
L.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2019
, “
Solar Treatment of Cohesive Particles in a Directly Irradiated Rotary Kiln
,”
Sol. Energy
,
182
, pp.
480
490
.
10.
Abanades
,
S.
, and
André
,
L.
,
2018
, “
Design and Demonstration of a High Temperature Solar-Heated Rotary Tube Reactor for Continuous Particles Calcination
,”
Appl. Energy
,
212
, pp.
1310
1320
.
11.
Nikulshina
,
V.
,
Halmann
,
M.
, and
Steinfeld
,
A.
,
2009
, “
Coproduction of Syngas and Lime by Combined CaCO3-Calcination and CH4-Reforming Using a Particle-Flow Reactor Driven by Concentrated Solar Radiation
,”
Energy Fuels
,
23
(
12
), pp.
6207
6212
.
12.
Shahabuddin
,
M.
,
Alim
,
M. A.
,
Alam
,
T.
,
Mofijur
,
M.
,
Ahmed
,
S. F.
, and
Perkins
,
G.
,
2021
, “
A Critical Review on the Development and Challenges of Concentrated Solar Power Technologies
,”
Sustain. Energy Technol. Assess.
,
47
, p.
101434
.
13.
Lipiński
,
W.
,
Abbasi-Shavazi
,
E.
,
Chen
,
J.
,
Coventry
,
J.
,
Hangi
,
M.
,
Iyer
,
S.
,
Kumar
,
A.
, et al
,
2021
, “
Progress in Heat Transfer Research for High-Temperature Solar Thermal Applications
,”
Appl. Therm. Eng.
,
184
, p.
116137
.
14.
Lorentzou
,
S.
,
Dimitrakis
,
D.
,
Zygogianni
,
A.
,
Karagiannakis
,
G.
, and
Konstandopoulos
,
A. G.
,
2017
, “
Thermochemical H2O and CO2 Splitting Redox Cycles in a NiFe2O4 Structured Redox Reactor: Design, Development and Experiments in a High Flux Solar Simulator
,”
Sol. Energy
,
155
, pp.
1462
1481
.
15.
Sebastián González
,
R.
, and
Flamant
,
G.
,
2014
, “
Technical and Economic Feasibility Analysis of Using Concentrated Solar Thermal Technology in the Cement Production Process: Hybrid Approach—A Case Study
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
025001
.
16.
Fogler
,
H. S.
,
1999
,
Elements of Chemical Reaction Engineering
,
Pearson Educaction
,
Upper Saddle River, NJ
.
17.
Ehrhart
,
B. D.
,
Muhich
,
C. L.
,
Al-Shankiti
,
I.
, and
Weimer
,
A. W.
,
2016
, “
System Efficiency for Two-Step Metal Oxide Solar Thermochemical Hydrogen Production—Part 1: Thermodynamic Model and Impact of Oxidation Kinetics
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
19881
19893
.
18.
Shi
,
X.
,
Ronsse
,
F.
,
Roegiers
,
J.
, and
Pieters
,
J. G.
,
2019
, “
3D Eulerian-Eulerian Modeling of a Screw Reactor for Biomass Thermochemical Conversion. Part 1: Solids Flow Dynamics and Back-Mixing
,”
Renew. Energy
,
143
, pp.
1465
1476
.
19.
Hua
,
L.
,
Wang
,
J.
, and
Li
,
J.
,
2014
, “
CFD Simulation of Solids Residence Time Distribution in a CFB Riser
,”
Chem. Eng. Sci.
,
117
, pp.
264
282
.
20.
Sievers
,
D. A.
, and
Stickel
,
J. J.
,
2018
, “
Modeling Residence-Time Distribution in Horizontal Screw Hydrolysis Reactors
,”
Chem. Eng. Sci.
,
175
, pp.
396
404
.
You do not currently have access to this content.