Abstract

A numerical investigation was performed to study the thermo-hydraulic performance in an enhanced tube with crossed helical dimples. The simulations were carried out in the Reynolds number range of 5000–30,000 in crossed helical dimple tube of a period length with a constant wall temperature of 350 K. The thermal enhancement, friction factor, and performance evaluation criteria (PEC) were the primary focus of the present work. Moreover, geometric parameters such as spiral pitch, transverse length, and dimple depth were investigated for their effects on thermo-hydraulic performance. The results revealed that the shape of crossed helical dimple exerts positive effects on the heat transfer enhancement. This unique shape generated intensive transverse flow and induced a higher transverse velocity, leading to heat transfer enhancement. Therefore, the synthesized heat transfer performance was increased by 150–225% over that of the smooth tube. Furthermore, the heat transfer enhancement and friction factors increased with increasing dimple depth and declining spiral pitch and transverse length. Within the scope of this study, the maximum PEC = 2.25 was observed for Re = 30,000, P = 30 mm, L = 11.064 mm, and H = 3 mm.

References

1.
Wijayanta
,
A. T.
,
Mirmanto
, and
Aziz
,
M.
,
2018
, “
Heat Transfer Augmentation of Internal Flow Using Twisted Tape Insert in Turbulent Flow
,”
Heat Transfer Eng.
,
41
(
14
), pp.
1288
1300
.
2.
Promvonge
,
P.
, and
Skullong
,
S.
,
2021
, “
Heat Transfer in a Tube With Combined V-Winglet and Twin Counter-Twisted Tape
,”
Case Stud. Therm. Eng.
,
26
, p.
101033
.
3.
Kim
,
D.
,
2021
, “
Comparison of Optimal Thermal Performances of Finned Tube Annuli With Various Fin Shapes
,”
Int. J. Heat Mass Transfer
,
175
, p.
121402
.
4.
Li
,
X. L.
,
Wang
,
S. Q.
,
Yang
,
D. L.
,
Tang
,
G. H.
, and
Wang
,
Y. C.
,
2021
, “
Thermal-Hydraulic and Fouling Performances of Enhanced Double H-Type Finned Tubes for Residual Heat Recovery
,”
Appl. Therm. Eng.
,
189
, p.
116724
.
5.
Zheng
,
N. B.
,
Liu
,
W.
,
Liu
,
Z. C.
,
Liu
,
P.
, and
Shan
,
F.
,
2015
, “
A Numerical Study on Heat Transfer Enhancement and the Flow Structure in a Heat Exchanger Tube With Discrete Double Inclined Ribs
,”
Appl. Therm. Eng.
,
90
, pp.
232
241
.
6.
Zhang
,
L.
,
Xiong
,
W.
,
Zheng
,
J. Y.
,
Liang
,
Z.
, and
Xie
,
S.
,
2021
, “
Numerical Analysis of Heat Transfer Enhancement and Flow Characteristics Inside Cross-Combined Ellipsoidal Dimple Tube
,”
Case Stud. Therm. Eng.
,
25
, p.
100937
.
7.
Zheng
,
N. B.
,
Liu
,
P.
,
Shan
,
F.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2016
, “
Numerical Investigations of the Thermal-Hydraulic Performance in a Rib-Grooved Heat Exchanger Tube Based on Entropy Generation Analysis
,”
Appl. Therm. Eng.
,
99
, pp.
1071
1085
.
8.
Guo
,
S. P.
,
Wu
,
Z.
,
Li
,
W.
,
Kukulka
,
D.
,
Sundén
,
B.
,
Zhou
,
X. P.
,
Wei
,
J. J.
, and
Simon
,
T.
,
2015
, “
Condensation and Evaporation Heat Transfer Characteristics in Horizontal Smooth, Herringbone and Enhanced Surface EHT Tubes
,”
Int. J. Heat Mass Transfer
,
85
, pp.
281
291
.
9.
Li
,
M.
,
Khan
,
T. S.
,
Al-Hajri
,
E.
, and
Ayub
,
Z. H.
,
2016
, “
Single phase heat transfer and pressure drop analysis of a dimpled enhanced tube
,”
Appl. Therm. Eng
,
101
, pp.
38
46
.
10.
Wang
,
Y.
,
He
,
Y. L.
,
Lei
,
Y. G.
, and
Zhang
,
J.
,
2010
, “
Heat Transfer and Hydrodynamics Analysis of a Novel Dimpled Tube
,”
Exp. Therm. Fluid. Sci.
,
34
(
8
), pp.
1273
1281
.
11.
Kanit
,
A.
, and
Somchai
,
W.
,
2019
, “
Experimental Investigation of Condensation Heat Transfer and Pressure Drop of R-134a Flowing Inside Dimpled Tubes With Different Dimpled Depths
,”
Int. J. Heat Mass Transfer
,
128
, pp.
783
793
.
12.
García
,
A.
,
Solano
,
J. P.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2012
, “
The Influence of Artificial Roughness Shape on Heat Transfer Enhancement: Corrugated Tubes, Dimpled Tubes and Wire Coils
,”
Appl. Therm. Eng.
,
35
, pp.
196
201
.
13.
Aroonrat
,
K.
,
Jumpholkul
,
C.
,
Leelaprachakul
,
R.
,
Dalkilic
,
A. S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2013
, “
Heat Transfer and Single-Phase Flow in Internally Grooved Tubes
,”
Int. Commun. Heat Mass Transfer
,
42
, pp.
62
68
.
14.
Kumar
,
P.
,
2019
, “
Numerical Investigation of Fluid Flow and Heat Transfer in Trapezoidal Microchannel With Groove Structure
,”
Int. J. Therm. Sci.
,
136
, pp.
33
43
.
15.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
,
2008
, “
Numerical Study on Heat Transfer of Turbulent Channel Flow Over Periodic Grooves
,”
Int. Commun. Heat Mass Transfer
,
35
(
7
), pp.
844
852
.
16.
Zheng
,
J. Y.
,
Liang
,
Z.
,
Zhang
,
L.
,
Zhou
,
J. W.
, and
Yan
,
Z. C.
,
2023
, “
Forming Experiment of Extruded Tube With Crossed Ellipsoidal Dimples and Numerical Investigation on Heat Transfer Enhancement and Flow Characteristics
,”
Int. Commun. Heat Mass Transfer
,
141
, p.
106599
.
17.
Dagdevir
,
T.
,
Keklikcioglu
,
O.
, and
Ozceyhan
,
V.
,
2019
, “
Heat Transfer Performance and Flow Characteristic in Enhanced Tube With the Trapezoidal Dimples
,”
Int. Commun. Heat Mass Transfer
,
108
, p.
104299
.
18.
Xie
,
S.
,
Liang
,
Z.
,
Zhang
,
L.
, and
Wang
,
Y. L.
,
2018
, “
A Numerical Study on Heat Transfer Enhancement and Flow Structure in Enhanced Tube With Cross Ellipsoidal Dimples
,”
Int. J. Heat Mass Transfer
,
125
, pp.
434
444
.
19.
Xie
,
S.
,
Liang
,
Z.
,
Zhang
,
J.
,
Zhang
,
L.
,
Wang
,
Y. L.
, and
Hu
,
D.
,
2019
, “
Numerical Investigation on Flow and Heat Transfer in Dimpled Tube With Teardrop Dimples
,”
Int. J. Heat Mass Transfer
,
131
, pp.
713
723
.
20.
Sabir
,
R.
,
Khan
,
M. M.
,
Sheikh
,
N. A.
, and
Ahad
,
I. U.
,
2022
, “
Effect of Dimple Pitch on Thermal-Hydraulic Performance of Tubes Enhanced With Ellipsoidal and Teardrop Dimples
,”
Case Stud. Therm. Eng.
,
31
, p.
101835
.
21.
Li
,
Y. X.
,
Wu
,
J. H.
,
Wang
,
H.
,
Kou
,
L. P.
, and
Tian
,
X. H.
,
2012
, “
Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating With Spiral Corrugation
,”
Energy Procedia
,
17
, pp.
791
800
.
22.
Pirbastami
,
S.
,
Moujaes
,
S. F.
, and
Mol
,
S. G.
,
2016
, “
Computational Fluid Dynamics Simulation of Heat Enhancement in Internally Helical Grooved Tubes
,”
Int. Commun. Heat Mass Transfer
,
73
, pp.
25
32
.
23.
Xie
,
S.
,
Liang
,
Z.
,
Zhang
,
L.
,
Wang
,
Y. L.
,
Ding
,
H.
, and
Zhang
,
J.
,
2018
, “
Numerical Investigation on Heat Transfer Performance and Flow Characteristics in Enhanced Tube With Dimples and Protrusions
,”
Int. J. Heat Mass Transfer
,
122
, pp.
602
613
.
24.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
(
8
), pp.
1127
1136
.
25.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
26.
Petukhov
,
B.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.
27.
Xie
,
Y.
,
Qu
,
H.
, and
Zhang
,
D.
,
2015
, “
Numerical Investigation of Flow and Heat Transfer in Rectangular Channel With Teardrop Dimple/Protrusion
,”
Int. J. Heat Mass Transfer
,
84
, pp.
486
496
.
28.
Xie
,
G. N.
,
Liu
,
J.
,
Zhang
,
W. H.
,
Lorenzini
,
G.
, and
Biserni
,
C.
,
2014
, “
Numerical Prediction of Flow Structure and Heat Transfer in Square Channels With Dimples Combined With Secondary Half-Size Dimples/Protrusions
,”
Numer. Heat Transfer A: Appl.
,
65
(
4
), pp.
327
356
.
29.
Rao
,
Y.
,
Zhang
,
P.
,
Xu
,
Y. M.
, and
Ke
,
H. B.
,
2020
, “
Experimental Study and Numerical Analysis of Heat Transfer Enhancement and Turbulent Flow Over Shallowly Dimpled Channel Surfaces
,”
Int. J. Heat Mass Transfer
,
160
, p.
120195
.
You do not currently have access to this content.