Abstract

Enhancing gas-side thermal conductance is essential for the compact sizing of finned-tube heat exchangers, and this study attempts it by integrating vortex generators. The orientation of the vortex generators, which is defined by its attack angle, has a strong bearing on the degree of augmentation. As the energy efficiency keeps varying with the attack angle, the thrust of this investigation is to identify the best attack angle(s) for the stipulated task. For that purpose, four distinct attack angles (i.e., 15 deg, 30 deg, 45 deg and 60 deg), representing the entire effective range, are considered. Since spatial positioning of the generators too has a strong bearing on energy efficiency, therefore, its effect is duly accounted for a comprehensive investigation. For the selection of optimal designs, regression-based phenomenological models are used as they apply thermo-hydraulic trade-offs. After determining the best angle(s), a study is carried out to evaluate their robustness under varying operating conditions. Although phenomenological models are adequate for design optimization, they do not describe the physics of thermo-hydraulic enhancement. Therefore, a study explaining the bearing of design modifications on the local characteristics too is carried out. Additionally, a study discussing the effect of generators’ attack angle on heat transfer over the wake-affected surfaces, which has a predominant existence in baseline flows, is reported. It has been found that thermal augmentation over the said surfaces is the key to compact sizing of the system. For a selected wake-region deployment, the highest relative Colburn j-factor corresponding to wake-affected fin equals 3.07 at the specified Reynolds number.

References

1.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor & Francis
,
New York
.
2.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
31
(
1
), pp.
87
97
.
3.
Wang
,
Q.
,
Zeng
,
M.
,
Ma
,
T.
,
Du
,
X.
, and
Yang
,
J.
,
2014
, “
Recent Development and Application of Several High Efficiency Surface Heat Exchangers for Energy Conversion and Utilization
,”
Appl. Energy
,
135
, pp.
748
777
.
4.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid. Sci.
,
11
(
3
), pp.
295
309
.
5.
Huisseune
,
H.
,
T’Joen
,
C.
,
Jaeger
,
P. D.
,
Ameel
,
B.
,
Schampheleire
,
S. D.
, and
Paepe
,
M. D.
,
2013
, “
Performance Enhancement of a Louvered fin Heat Exchanger by Using Delta Winglet Vortex Generators
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
475
487
.
6.
Sinha
,
A.
,
Raman
,
K. A.
,
Chattopadhyay
,
H.
, and
Biswas
,
G.
,
2013
, “
Effects of Different Orientations of Winglet Arrays on the Performance of Plate-fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
202
214
.
7.
Tiggelbeck
,
S.
,
Mitra
,
N.
, and
Fiebig
,
M.
,
1994
, “
Comparison of Wing Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
4
), pp.
880
885
.
8.
Arora
,
A.
, and
Subbarao
,
P. M. V.
,
2023
, “
Investigation of Performance Augmentation due to Geometric Modification of Vortex Generators Placed in fin-and-Tube Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
5
), p.
050906
.
9.
Jain
,
A.
,
Biswas
,
G.
, and
Maurya
,
D.
,
2003
, “
Winglet-Type Vortex Generators With Common-Flow-Up Configuration for Fin-Tube Heat Exchangers
,”
Numer. Heat Transf., A: Appl.
,
43
(
2
), pp.
201
219
.
10.
Zhang
,
Y. H.
,
Wu
,
X.
,
Wang
,
L. B.
,
Song
,
K. W.
,
Dong
,
Y. X.
, and
Liu
,
S.
,
2008
, “
Comparison of Heat Transfer Performance of Tube Bank fin With Mounted Vortex Generators to Tube Bank fin With Punched Vortex Generators
,”
Exp. Therm. Fluid. Sci.
,
33
(
1
), pp.
58
66
.
11.
Wang
,
L. B.
,
Ke
,
F.
,
Gao
,
S. D.
, and
Mei
,
Y. G.
,
2002
, “
Local and Average Characteristics of Heat/Mass Transfer Over Flat Tube Bank Fin With Four Vortex Generators per Tube
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
3
), pp.
546
552
.
12.
Song
,
K.
,
Xi
,
Z.
,
Su
,
M.
,
Wang
,
L.
,
Wu
,
X.
, and
Wang
,
L.
,
2017
, “
Effect of Geometric Size of Curved Delta Winglet Vortex Generators and Tube Pitch on Heat Transfer Characteristics of Fin-Tube Heat Exchanger
,”
Exp. Therm. Fluid. Sci.
,
82
, pp.
8
18
.
13.
He
,
Y. L.
,
Chu
,
P.
,
Tao
,
W. Q.
,
Zhang
,
Y. W.
, and
Xie
,
T.
,
2013
, “
Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers With Rectangular Winglet-Type Vortex Generators
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
770
783
.
14.
Gong
,
J.
,
Min
,
C.
,
Qi
,
C.
,
Wang
,
E.
, and
Tian
,
L.
,
2013
, “
Numerical Simulation of Flow and Heat Transfer Characteristics in Wavy Fin-and-Tube Heat Exchanger With Combined Longitudinal Vortex Generators
,”
Int. Commun. Heat Mass Transfer
,
43
, pp.
53
56
.
15.
Leu
,
J. S.
,
Wu
,
Y. H.
, and
Jang
,
J. Y.
,
2004
, “
Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers With a Pair of Block Shape Vortex Generators
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4327
4338
.
16.
Jang
,
J. Y.
,
Hsu
,
L. F.
, and
Leu
,
J. S.
,
2013
, “
Optimization of the Span Angle and Location of Vortex Generators in a Plate-Fin and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
67
, pp.
432
444
.
17.
Liu
,
Y.
,
Ma
,
X.
,
Ye
,
X.
,
Chen
,
Y.
,
Cheng
,
Y.
, and
Lan
,
Z.
,
2019
, “
Heat Transfer Enhancement of Annular Finned Tube Exchanger Using Vortex Generators: The Effect of Oriented Functional Circumferential Arrangement
,”
Ther. Sci. Eng. Prog.
,
10
, pp.
27
35
.
18.
Naik
,
H.
, and
Tiwari
,
S.
,
2021
, “
Numerical Investigations on Fluid Flow and Heat Transfer Characteristics of Different Locations of Winglets Mounted in Fin-Tube Heat Exchangers
,”
Ther. Sci. Eng. Prog.
,
22
, p.
100795
.
19.
Che
,
M.
, and
Elbel
,
S.
,
2022
, “
Comparison of Local and Averaged Air-Side Heat Transfer Coefficients on Fin-and-Tube Heat Exchangers Obtained With Experimental and Numerical Methods
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
7
), p.
071013
. doi.org/10.1115/1.4053601
20.
Khan
,
T. A.
, and
Li
,
W.
,
2018
, “
Optimal Configuration of Vortex Generator for Heat Transfer Enhancement in a Plate-Fin Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021013
. doi.org/10.1115/1.4038418
21.
Oneissi
,
M.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2019
, “
Inclination Angle Optimization for “Inclined Projected Winglet Pair” Vortex Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011014
. doi.org/10.1115/1.4041438
22.
Arora
,
A.
,
Subbarao
,
P. M. V.
, and
Agarwal
,
R. S.
,
2016
, “
Development of Parametric Space for the Vortex Generator Location for Improving Thermal Compactness of an Existing Inline Fin and Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
98
, pp.
727
742
.
23.
Kays
,
W. M.
, and
London
,
A. L.
,
1994
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
24.
Fiebig
,
M.
,
Valencia
,
A.
, and
Mitra
,
N. K.
,
1993
, “
Wing-type Vortex Generators for Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid. Sci.
,
7
(
4
), pp.
287
295
.
25.
Tang
,
L. H.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2009
, “
Experimental and Numerical Investigation on Air-Side Performance of Fin-and-Tube Heat Exchangers With Various Fin Patterns
,”
Exp. Therm. Fluid. Sci.
,
33
(
5
), pp.
818
827
.
26.
Tian
,
L.
,
He
,
Y.
,
Tao
,
Y.
, and
Tao
,
W.
,
2009
, “
A Comparative Study on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchanger With Punched Delta Winglets in Staggered and In-Line Arrangements
,”
Int. J. Therm. Sci.
,
48
(
9
), pp.
1765
1776
.
27.
FLUENT User guide
,
2004
,
Fluent Incorporated Lebanon
,
NH, USA
.
28.
Gorji
,
M.
,
Mirgolbabaei
,
H.
,
Barari
,
A.
,
Domairry
,
G.
, and
Nadim
,
N.
,
2011
, “
Numerical Analysis on Longitudinal Location Optimization of Vortex Generator in Compact Heat Exchangers
,”
Int. J. Numer. Methods Fluids
,
66
(
6
), pp.
705
713
.
29.
Kwak
,
K. M.
,
Torii
,
K.
, and
Nishino
,
K.
,
2005
, “
Simultaneous Heat Transfer Enhancement and Pressure Loss Reduction for Finned-Tube Bundles With the First or Two Transverse Rows of Built-in Winglets
,”
Exp. Therm. Fluid. Sci.
,
29
(
5
), pp.
625
632
.
30.
Sinha
,
A.
,
Chattopadhyay
,
H.
,
Iyengar
,
A. K.
, and
Biswas
,
G.
,
2016
, “
Enhancement of Heat Transfer in a Fin-Tube Heat Exchanger Using Rectangular Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
101
, pp.
667
681
.
31.
Pal
,
A.
,
Bandyopadhyay
,
D.
,
Biswas
,
G.
, and
Eswaran
,
V.
,
2012
, “
Enhancement of Heat Transfer Using Delta-Winglet Type Vortex Generators With a Common-Flow-up Arrangement
,”
Numerical Heat Transfer: Part A
,
61
(
12
), pp.
912
928
.
32.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2007
, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
9
), pp.
1156
1167
.
You do not currently have access to this content.