Abstract

Gallium nitride (GaN) thin films have attracted considerable attention for manufacturing optical and electronic devices. They have wide bandgap and superb performance in these applications. The reliability and durability of optoelectronic devices depend on the quality of the GaN thin films. The metal-organic chemical vapor deposition (MOCVD) process is a common manufacturing technique for fabricating high-quality thin films. By manipulating the operating conditions and the reactor design, one can control the deposition rate and the uniformity of the thin film. In this paper, the manufacturing process for GaN thin films in a multi-wafer MOCVD reactor is simulated based on the three-dimensional computational model of an experimental system which provides data for validation as well as realistic design parameters. The reactor pressure and the flow rate of the precursor, trimethyl-gallium (TMG), significantly affect the deposition rate and film uniformity. The incursion of impurities in the deposition can be reduced by increasing the volumetric ratio of NH3 to TMG (V/III) and reducing the reactor pressure. The deposition rate and quality of the thin film are enhanced using an appropriate mixture of H2 and N2 as the carrier gas. The design of the inlet can also be varied to improve the utilization of metal-organic precursors and increase the deposition rate. This paper presents and discusses results on these aspects for this important manufacturing process. Thus, it leads to a better understanding of the basic mechanisms involved and provides guidelines for obtaining high deposition rates with high film quality in practical chemical vapor deposition reactors.

References

1.
Nakamura
,
S.
,
Senoh
,
M.
,
Iwasa
,
N.
, and
Shin-ichi Nagahama Nagahama
,
S.-I. N.
,
1995
, “
High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes With Quantum Well Structures
,”
Jpn. J. Appl. Phys.
,
34
(
7A
), pp.
L797
L799
.
2.
Watson
,
I. M.
,
2013
, “
Metal Organic Vapour Phase Epitaxy of AlN, GaN, InN and Their Alloys: A Key Chemical Technology for Advanced Device Applications
,”
Coord. Chem. Rev.
,
257
(
13
), pp.
2120
2141
.
3.
Huang
,
W. C.
,
Chu
,
C. M.
,
Wong
,
Y. Y.
,
Chen
,
K. W.
,
Lin
,
Y. K.
,
Wu
,
C. H.
,
Lee
,
W. I.
, and
Chang
,
E. Y.
,
2016
, “
Investigations of GaN Growth on the Sapphire Substrate by MOCVD Method With Different AlN Buffer Deposition Temperatures
,”
Mater. Sci. Semicond. Process.
,
45
(
Supplement C
), pp.
1
8
.
4.
Cheng
,
W. T.
,
Li
,
H. C.
, and
Huang
,
C. N.
,
2008
, “
Simulation and Optimization of Silicon Thermal CVD Through CFD Integrating Taguchi Method
,”
Chem. Eng. J.
,
137
(
3
), pp.
603
613
.
5.
Ra
,
Y. H.
,
Navamathavan
,
R.
,
Lee
,
Y. M.
,
Kim
,
D. W.
,
Kim
,
J. S.
,
Lee
,
I. H.
, and
Lee
,
C. R.
,
2010
, “
The Influence of the Working Pressure on the Synthesis of GaN Nanowires by Using MOCVD
,”
J. Cryst. Growth
,
312
(
6
), pp.
770
774
.
6.
Hiramatsu
,
K.
,
Itoh
,
S.
,
Amano
,
H.
,
Akasaki
,
I.
,
Kuwano
,
N.
,
Shiraishi
,
T.
, and
Oki
,
K.
,
1991
, “
Growth Mechanism of GaN Grown on Sapphire With A1N Buffer Layer by MOVPE
,”
J. Cryst. Growth
,
115
(
1
), pp.
628
633
.
7.
Mitrovic
,
B.
,
Gurary
,
A.
, and
Quinn
,
W.
,
2007
, “
Process Conditions Optimization for the Maximum Deposition Rate and Uniformity in Vertical Rotating Disc MOCVD Reactors Based on CFD Modeling
,”
J. Cryst. Growth
,
303
(
1
), pp.
323
329
.
8.
Mitrovic
,
B.
,
Gurary
,
A.
, and
Kadinski
,
L.
,
2006
, “
On the Flow Stability in Vertical Rotating Disc MOCVD Reactors Under a Wide Range of Process Parameters
,”
J. Cryst. Growth
,
287
(
2
), pp.
656
663
.
9.
Wu
,
B.
,
Ma
,
R.
, and
Zhang
,
H.
,
2003
, “
Epitaxy Growth Kinetics of GaN Films
,”
J. Cryst. Growth
,
250
(
1
), pp.
14
21
.
10.
Wong
,
S.
, and
Jaluria
,
Y.
,
2020
, “
A Numerical and Experimental Study on the Fabrication GaN Films by Chemical Vapor Deposition
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011001
.
11.
Ponce
,
F. A.
, and
Bour
,
D. P.
,
1997
, “
Nitride-Based Semiconductors for Blue and Green Light-Emitting Devices
,”
Nature
,
386
(
6623
), pp.
351
359
.
12.
Wang
,
W.
,
Yang
,
H.
, and
Li
,
G.
,
2013
, “
Growth and Characterization of GaN-Based LED Wafers on La0.3Sr1.7AlTaO6 Substrates
,”
J. Mater. Chem. C
,
1
(
26
), pp.
4070
4077
.
13.
Hu
,
S.
,
Liu
,
S.
,
Zhang
,
Z.
,
Yan
,
H.
,
Gan
,
Z.
, and
Fang
,
H.
,
2015
, “
A Novel MOCVD Reactor for Growth of High-Quality GaN-Related LED Layers
,”
J. Cryst. Growth
,
415
(
Supplement C
), pp.
72
77
.
14.
Wang
,
C. C.
,
Chen
,
K. C.
,
Tsai
,
C. D.
,
Chian
,
J. C.
,
Chao
,
C. L.
, and
Lin
,
Y. J.
,
2015
, “
Development of a Novel Gas Spray Module for MOCVD Systems
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
80
83
.
15.
Cheng
,
Y.
,
Liu
,
P.
,
Wu
,
J.
,
Xiang
,
Y.
,
Chen
,
X.
,
Ji
,
C.
,
Yu
,
T.
, and
Zhang
,
G.
,
2016
, “
High Uniform Growth of 4-Inch GaN Wafer Via Flow Field Optimization by HVPE
,”
J. Cryst. Growth
,
445
, pp.
24
29
.
16.
Jumaah
,
O.
, and
Jaluria
,
Y.
,
2021
, “
Experimental Study of the Effect of Precursor Composition on the Microstructure of Gallium Nitride Thin Films Grown by the MOCVD Process
,”
ASME J. Heat Transfer
,
143
(
10
), p.
102201
.
17.
Fotiadis
,
D. I.
,
Kieda
,
S.
, and
Jensen
,
K. F.
,
1990
, “
Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy: I. Effects of Heat Transfer Characteristics, Reactor Geometry, and Operating Conditions
,”
J. Cryst. Growth
,
102
(
3
), pp.
441
470
.
18.
Tseng
,
C. F.
,
Tsai
,
T. Y.
,
Huang
,
Y. H.
,
Lee
,
M. T.
, and
Horng
,
R. H.
,
2015
, “
Transport Phenomena and the Effects of Reactor Geometry for Epitaxial GaN Growth in a Vertical MOCVD Reactor
,”
J. Cryst. Growth
,
432
, pp.
54
63
.
19.
Begarney
,
M. J.
, and
Campanale
,
F. J.
,
2014
, “Chemical Vapor Deposition Reactor,” United States Patent US8778079B2, Filed October 9, 2008, and issued July 15, 2014. https://patents.google.com/patent/US8778079/en
20.
Hu
,
C. K.
,
Chen
,
C. J.
, and
Wei
,
T. C.
,
2016
, “
A Simplified and Universal Mechanism Model for Prediction of Gallium Nitride Thin Film Growth Through Numerical Analysis
,”
Int. J. New Technol. Res.
,
2
(
7
), pp.
7
15
.
21.
Jumaah
,
O.
, and
Jaluria
,
Y.
,
2019
, “
The Effect of Carrier Gas and Reactor Pressure on Gallium Nitride Growth in MOCVD Manufacturing Process
,”
ASME J. Heat Transfer
,
141
(
8
), p.
082101
.
22.
ANSYS, Inc.
,
2016
,
ANSYS Fluent User’s Guide
,
ANSYS, Inc.
,
Canonsburg, PA
, http://www.ansys.com
23.
Theodoropoulos
,
C.
,
Mountziaris
,
T. J.
,
Moffat
,
H. K.
, and
Han
,
J.
,
2000
, “
Design of Gas Inlets for the Growth of Gallium Nitride by Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
217
(
1
), pp.
65
81
.
24.
Jones
,
A. C.
,
1993
, “
Metalorganic Precursors for Vapour Phase Epitaxy
,”
J. Cryst. Growth
,
129
(
3
), pp.
728
773
.
25.
Matsumoto
,
K.
,
Yamaoka
,
Y.
,
Ubukata
,
A.
,
Arimura
,
T.
,
Piao
,
G.
,
Yano
,
Y.
,
Tokunaga
,
H.
, and
Tabuchi
,
T.
,
2016
, “
Opportunities and Challenges in GaN Metal Organic Chemical Vapor Deposition for Electron Devices
,”
Jpn. J. Appl. Phys.
,
55
(
5S
), p.
05FK04
.
26.
Ubukata
,
A.
,
Yano
,
Y.
,
Shimamura
,
H.
,
Yamaguchi
,
A.
,
Tabuchi
,
T.
, and
Matsumoto
,
K.
,
2013
, “
High-Growth-Rate AlGaN Buffer Layers and Atmospheric-Pressure Growth of Low-Carbon GaN for AlGaN/GaN HEMT on the 6-in.-Diameter Si Substrate Metal-Organic Vapor Phase Epitaxy System
,”
J. Cryst. Growth
,
370
, pp.
269
272
.
27.
Pearton
,
S. J.
,
Shul
,
R. J.
,
Wilson
,
R. G.
,
Ren
,
F.
,
Zavada
,
J. M.
,
Abernathy
,
C. R.
,
Vartuli
,
C. B.
,
Lee
,
J. W.
,
Mileham
,
J. R.
, and
Mackenzie
,
J. D.
,
1996
, “
The Incorporation of Hydrogen Into III-V Nitrides During Processing
,”
J. Electron. Mater.
,
25
(
5
), pp.
845
849
.
28.
Zhang
,
J. L.
,
Liu
,
J. L.
,
Yong
,
P.
,
Fang
,
W. Q.
,
Zhang
,
M.
, and
Jiang
,
F. Y.
,
2014
, “
Effects of Carrier Gas on Carbon Incorporation in GaN
,”
Chin. Phys. Lett.
,
31
(
3
), p.
3
. 037102
29.
Jaluria
,
Y.
,
2018
,
Advanced Materials Processing and Manufacturing
,
Springer
,
Cham
.
30.
Li
,
H.
,
2011
, “
Mass Transport Analysis of a Showerhead MOCVD Reactor
,”
J. Semicond.
,
32
(
3
), p.
033006
.
31.
Hitchman
,
M. L.
, and
Jones
,
A. C.
,
2009
,
Chemical Vapour Deposition: Precursors, Processes and Applications
,
Royal Society of Chemistry
,
Cambridge, UK
.
32.
Schön
,
O.
,
Schineller
,
B.
,
Heuken
,
M.
, and
Beccard
,
R.
,
1998
, “
Comparison of Hydrogen and Nitrogen as Carrier Gas for MOVPE Growth of GaN
,”
J. Cryst. Growth
,
189–190
, pp.
335
339
.
You do not currently have access to this content.