Abstract

The Cooled Cooling Air (CCA) technology could be effectively used in an advanced gas turbine engine to reduce temperature of the highly compressed air and recover its cooling capacity, using the onboard fuel as coolant. Computational investigations are conducted to analyze heat exchange between the supercritical-pressure aviation kerosene and the compressed high-temperature air in a double-pipe counterflow configuration, intended for the CCA applications. The thermal oxidation reactions and surface coking of kerosene are taken into consideration based on a validated chemical mechanism. Results indicate that the air tube diameter should be determined to obtain not only the improved overall thermal performance on the air side, regarding both heat transfer and pressure drop, but also the properly limited maximum temperature on the fuel side to avoid the strong pyrolysis chemical reactions of kerosene and the resulting fast surface coking process. Although the ribbed and dimpled surface structures are both able to improve the overall thermal performance in the fuel tube and increase the bulk air temperature reduction, they also lead to the increased surface coking rate from the thermal oxidation reactions. The thermal oxidative coking process would gradually increase heat transfer barrier and cause an adverse effect on the long-time and efficient operation of a heat exchanger. Numerical results obtained in this paper should have fundamental and practical importance in CCA applications.

References

1.
Huang
,
H.
,
Spadaccini
,
L. J.
, and
Sobel
,
D. R.
,
2004
, “
Fuel-Cooled Thermal Management for Advanced Aeroengines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
284
293
.
2.
Zhu
,
Y.
,
Peng
,
W.
,
Xu
,
R.
, and
Jiang
,
P.
,
2018
, “
Review on Active Thermal Protection and Its Heat Transfer for Airbreathing Hypersonic Vehicles
,”
Chin. J. Aeronaut.
,
31
(
10
), pp.
1929
1953
.
3.
Wang
,
Z.
,
Wang
,
Y.
,
Zhang
,
J.
, and
Zhang
,
B.
,
2014
, “
Overview of the Key Technologies of Combined Cycle Engine Precooling Systems and the Advanced Applications of Micro-Channel Heat Transfer
,”
Aerosp. Sci. Technol.
,
39
, pp.
31
39
.
4.
Wang
,
X. F.
, and
Lefebvre
,
A. H.
,
1988
, “
Influence of Fuel Temperature on Atomization Performance of Pressure-Swirl Atomizers
,”
AIAA J. Propuls. Power
,
4
(
3
), pp.
222
227
.
5.
Dafsari
,
R. A.
,
Lee
,
H. J.
,
Han
,
J.
,
Park
,
D.-C.
, and
Lee
,
J.
,
2019
, “
Viscosity Effect on the Pressure Swirl Atomization of an Alternative Aviation Fuel
,”
Fuel
,
240
, pp.
179
191
.
6.
Wen
,
J.
,
Huang
,
H.
,
Li
,
H.
,
Xu
,
G.
, and
Fu
,
Y.
,
2017
, “
Thermal and Hydraulic Performance of a Compact Plate Finned Tube Air-Fuel Heat Exchanger for Aero-Engine
,”
Appl. Therm. Eng.
,
126
, pp.
920
928
.
7.
Deng
,
H. W.
,
Zhang
,
C. B.
,
Xu
,
G. Q.
,
Tao
,
Z.
,
Zhang
,
B.
, and
Liu
,
G. Z.
,
2011
, “
Density Measurements of Endothermic Hydrocarbon Fuel at Sub- and Supercritical Conditions
,”
J. Chem. Eng. Data
,
56
(
6
), pp.
2980
2986
.
8.
Zhong
,
F.-Q.
,
Fan
,
X.-J.
,
Wang
,
J.
,
Yu
,
G.
, and
Li
,
J.-G.
,
2012
, “
Characteristics of Compressible Flow of Supercritical Kerosene
,”
Acta Mech. Sin.
,
28
(
1
), pp.
8
13
.
9.
Xu
,
K.
, and
Meng
,
H.
,
2015
, “
Analyses of Surrogate Models for Calculating Thermophysical Properties of Aviation Kerosene RP-3 at Supercritical Pressures
,”
Sci. China Technol. Sci.
,
58
(
3
), pp.
510
518
.
10.
Pizzarelli
,
M.
,
Urbano
,
A.
, and
Nasuti
,
F.
,
2010
, “
Numerical Analysis of Deterioration in Heat Transfer to Near-Critical Rocket Propellants
,”
Numer. Heat Transf. Part Appl.
,
57
(
5
), pp.
297
314
.
11.
Hua
,
Y.
,
Wang
,
Y.
, and
Meng
,
H.
,
2010
, “
A Numerical Study of Supercritical Forced Convective Heat Transfer of n-Heptane Inside a Horizontal Miniature Tube
,”
J. Supercrit. Fluids
,
52
(
1
), pp.
36
46
.
12.
Urbano
,
A.
, and
Nasuti
,
F.
,
2012
, “
Parametric Analysis of Heat Transfer to Supercritical-Pressure Methane
,”
AIAA J. Thermophys. Heat Transf.
,
26
(
3
), pp.
450
463
.
13.
Dang
,
G.
,
Zhong
,
F.
,
Chen
,
L.
, and
Chang
,
X.
,
2013
, “
Numerical Investigation on Flow and Convective Heat Transfer of Aviation Kerosene at Supercritical Conditions
,”
Sci. China Technol. Sci.
,
56
(
2
), pp.
416
422
.
14.
Sun
,
F.
,
Li
,
Y.
,
Manca
,
O.
, and
Xie
,
G.
,
2019
, “
On Assessment of Heat Transfer Deterioration of a Channel With Supercritical n-Decane for Scramjet Engines Cooling
,”
Int. J. Heat Mass Transf.
,
135
, pp.
782
795
.
15.
Zhu
,
Y.
,
Zhao
,
R.
,
Wang
,
Y.
, and
Jiang
,
P.-X.
,
2019
, “
Investigation of Flow and Heat Transfer Instabilities and Oscillation Inhibition of n-Decane at Supercritical Pressure in Vertical Pipe
,”
Appl. Therm. Eng.
,
161
, p.
114143
.
16.
Wang
,
H.
,
Zhou
,
J.
,
Pan
,
Y.
, and
Wang
,
N.
,
2016
, “
Experimental Investigation on the Characteristics of Thermo-Acoustic Instability in Hydrocarbon Fuel at Supercritical Pressures
,”
Acta Astronaut.
,
121
, pp.
29
38
.
17.
Ruan
,
B.
,
Huang
,
S.
,
Meng
,
H.
, and
Gao
,
X.
,
2017
, “
Flow Dynamics in Transient Heat Transfer of n-Decane at Supercritical Pressure
,”
Int. J. Heat Mass Transf.
,
115
, pp.
206
215
.
18.
Zhu
,
J.
,
Tao
,
K.
,
Tao
,
Z.
, and
Qiu
,
L.
,
2019
, “
Heat Transfer Degradation of Buoyancy Involved Convective RP-3 Hydrocarbon Fuel in Vertical Tubes With Various Diameters Under Supercritical Pressure
,”
Appl. Therm. Eng.
,
163
, p.
114392
.
19.
Li
,
Y.
,
Sun
,
F.
,
Sunden
,
B.
, and
Xie
,
G.
,
2019
, “
Turbulent Heat Transfer Characteristics of Supercritical n-Decane in a Vertical Tube Under Various Operating Pressures
,”
Int. J. Energy Res.
,
43
(
9
), pp.
4652
4669
.
20.
Sun
,
X.
, and
Meng
,
H.
,
2021
, “
Large Eddy Simulations and Analyses of Hydrocarbon Fuel Heat Transfer in Vertical Upward Flows at Supercritical Pressures
,”
Int. J. Heat Mass Transf.
,
170
, p.
120988
.
21.
Liu
,
B.
,
Zhu
,
Y.
,
Yan
,
J.-J.
,
Lei
,
Y.
,
Zhang
,
B.
, and
Jiang
,
P.-X.
,
2015
, “
Experimental Investigation of Convection Heat Transfer of n-Decane at Supercritical Pressures in Small Vertical Tubes
,”
Int. J. Heat Mass Transf.
,
91
, pp.
734
746
.
22.
Fu
,
Y.
,
Huang
,
H.
,
Wen
,
J.
,
Xu
,
G.
, and
Zhao
,
W.
,
2017
, “
Experimental Investigation on Convective Heat Transfer of Supercritical RP-3 in Vertical Miniature Tubes With Various Diameters
,”
Int. J. Heat Mass Transf.
,
112
, pp.
814
824
.
23.
Ward
,
T. A.
,
Ervin
,
J. S.
,
Striebich
,
R. C.
, and
Zabarnick
,
S.
,
2004
, “
Simulations of Flowing Mildly-Cracked Normal Alkanes Incorporating Proportional Product Distributions
,”
AIAA J. Propuls. Power
,
20
(
3
), pp.
394
402
.
24.
Xu
,
K.
,
Tang
,
L.
, and
Meng
,
H.
,
2015
, “
Numerical Study of Supercritical-Pressure Fluid Flows and Heat Transfer of Methane in Ribbed Cooling Tubes
,”
Int. J. Heat Mass Transf.
,
84
, pp.
346
358
.
25.
Zhang
,
S.
,
Feng
,
Y.
,
Jiang
,
Y.
,
Qin
,
J.
,
Bao
,
W.
,
Han
,
J.
, and
Haidn
,
O. J.
,
2016
, “
Thermal Behavior in the Cracking Reaction Zone of Scramjet Cooling Channels at Different Channel Aspect Ratios
,”
Acta Astronaut.
,
127
, pp.
41
56
.
26.
Pu
,
H.
,
Li
,
S.
,
Jiao
,
S.
,
Dong
,
M.
, and
Shang
,
Y.
,
2018
, “
Numerical Investigation on Convective Heat Transfer to Aviation Kerosene Flowing in Vertical Tubes at Supercritical Pressures
,”
Int. J. Heat Mass Transf.
,
118
, pp.
857
871
.
27.
Tao
,
Z.
,
Cheng
,
Z.
,
Zhu
,
J.
, and
Li
,
H.
,
2016
, “
Effect of Turbulence Models on Predicting Convective Heat Transfer to Hydrocarbon Fuel at Supercritical Pressure
,”
Chin. J. Aeronaut.
,
29
(
5
), pp.
1247
1261
.
28.
Xu
,
K.
,
Ruan
,
B.
, and
Meng
,
H.
,
2018
, “
Validation and Analyses of RANS CFD Models for Turbulent Heat Transfer of Hydrocarbon Fuels at Supercritical Pressures
,”
Int. J. Therm. Sci.
,
124
, pp.
212
226
.
29.
Xu
,
K.
,
Sun
,
X.
, and
Meng
,
H.
,
2018
, “
Conjugate Heat Transfer, Endothermic Fuel Pyrolysis and Surface Coking of Aviation Kerosene in Ribbed Tube at Supercritical Pressure
,”
Int. J. Therm. Sci.
,
132
, pp.
209
218
.
30.
Li
,
X.
,
Du
,
M.
, and
Zhong
,
F.
,
2022
, “
Effect of Dimple Depth on Turbulent Flow and Heat Transfer of Kerosene in Rectangular Duct
,”
Acta Mech. Sin.
,
38
(
6
), p.
321271
.
31.
Feng
,
Y.
,
Cao
,
J.
,
Li
,
X.
,
Zhang
,
S.
,
Qin
,
J.
, and
Rao
,
Y.
,
2017
, “
Flow and Heat Transfer Characteristics of Supercritical Hydrocarbon Fuel in Mini Channels With Dimples
,”
ASME J. Heat Mass Trans.
,
139
(
12
), p.
122401
.
32.
Chen
,
Y.
,
Liu
,
Z.
, and
He
,
D.
,
2020
, “
Numerical Study on Enhanced Heat Transfer and Flow Characteristics of Supercritical Methane in a Square Mini-Channel With Dimple Array
,”
Int. J. Heat Mass Transf.
,
158
, p.
119729
.
33.
Jiang
,
H.
,
Ervin
,
J.
,
West
,
Z.
, and
Zabarnick
,
S.
,
2013
, “
Turbulent Flow, Heat Transfer Deterioration, and Thermal Oxidation of Jet Fuel
,”
AIAA J. Thermophys. Heat Transf.
,
27
(
4
), pp.
668
678
.
34.
Fu
,
Y.
,
Xu
,
G.
,
Wen
,
J.
, and
Huang
,
H.
,
2018
, “
Thermal Oxidation Coking of Aviation Kerosene RP-3 at Supercritical Pressure in Helical Tubes
,”
Appl. Therm. Eng.
,
128
, pp.
1186
1195
.
35.
Pei
,
X.
,
Hou
,
L.
, and
Roberts
,
W. L.
,
2018
, “
Experimental and Numerical Study on Oxidation Deposition Properties of Aviation Kerosene
,”
Energy Fuels
,
32
(
7
), pp.
7444
7450
.
36.
Liu
,
Z.
,
Gong
,
S.
,
Wang
,
L.
, and
Liu
,
G.
,
2022
, “
Experimental Investigation and Modeling of Thermal Oxidation Deposition of RP-3 Jet Fuel Under High Reynolds Number
,”
Fuel
,
311
, p.
122553
.
37.
Xu
,
K.
, and
Meng
,
H.
,
2016
, “
Numerical Study of Fluid Flows and Heat Transfer of Aviation Kerosene With Consideration of Fuel Pyrolysis and Surface Coking at Supercritical Pressures
,”
Int. J. Heat Mass Transf.
,
95
, pp.
806
814
.
38.
Jiao
,
S.
,
Li
,
S.
,
Pu
,
H.
,
Dong
,
M.
, and
Shang
,
Y.
,
2020
, “
Investigation of Pyrolysis Effect on Convective Heat Transfer Characteristics of Supercritical Aviation Kerosene
,”
Acta Astronaut.
,
171
, pp.
55
68
.
39.
Jiang
,
P.
,
Yan
,
J.
,
Yan
,
S.
,
Lu
,
Z.
, and
Zhu
,
Y.
,
2019
, “
Thermal Cracking and Heat Transfer of Hydrocarbon Fuels at Supercritical Pressures in Vertical Tubes
,”
Heat Transf. Eng.
,
40
(
5–6
), pp.
437
449
.
40.
Feng
,
Y.
,
Cao
,
Y.
,
Liu
,
S.
,
Qin
,
J.
,
Hemeda
,
A. A.
, and
Ma
,
Y.
,
2019
, “
The Influence of Coking on Heat Transfer in Turbulent Reacting Flow of Supercritical Hydrocarbon Fuels
,”
Int. J. Heat Mass Transf.
,
144
, p.
118623
.
41.
Tao
,
Z.
,
Fu
,
Y.
,
Xu
,
G.
,
Deng
,
H.
, and
Jia
,
Z.
,
2014
, “
Experimental Study on Influences of Physical Factors to Supercritical RP-3 Surface and Liquid-Space Thermal Oxidation Coking
,”
Energy Fuels
,
28
(
9
), pp.
6098
6106
.
42.
Liu
,
Z.
,
Tang
,
S.
,
Li
,
Z.
,
Qin
,
Z.
,
Yuan
,
S.
,
Wang
,
L.
,
Wang
,
L.
,
Zhang
,
X.
, and
Liu
,
G.
,
2019
, “
An Improved Kinetic Model for Deposition by Thermal Oxidation of Aviation Hydrocarbon Fuels
,”
Fuel
,
258
, p.
116139
.
43.
Sun
,
X.
,
Yuan
,
Y.
,
Tan
,
T.
,
Jing
,
T.
,
Qin
,
F.
, and
Meng
,
H.
,
2022
, “
Large Eddy Simulations of Heat Transfer and Thermal Oxidative Coking of Aviation Kerosene in Vertical U-Tube at a Supercritical Pressure
,”
Int. J. Heat Mass Transf.
,
195
, p.
123205
.
44.
Pei
,
X.
, and
Hou
,
L.
,
2016
, “
Secondary Flow and Oxidation Coking Deposition of Aviation Fuel
,”
Fuel
,
167
, pp.
68
74
.
45.
Pei
,
X.
,
Hou
,
L.
, and
Ren
,
Z.
,
2017
, “
Kinetic Modeling of Thermal Oxidation and Coking Deposition in Aviation Fuel
,”
Energy Fuels
,
31
(
2
), pp.
1399
1405
.
46.
Huang
,
X.
,
Wang
,
Q.
,
Song
,
Z.
,
Yin
,
Y.
, and
Wang
,
H.
,
2020
, “
Heat Transfer Characteristics of Supercritical Water in Horizontal Double-Pipe
,”
Appl. Therm. Eng.
,
173
, p.
115191
.
47.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “Forced Convection Heat Transfer to Fluids at Supercritical Pressure,”
Turbulent Forced Convection in Channels and Bundles
,
S.
Kakac
, and
D. B.
Spalding
, eds.,
Hemisphere
,
Washington
, pp.
563
611
.
You do not currently have access to this content.