Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Regarding high-precision temperature field prediction of a heating ventilation and air conditioning (HVAC) unit using thermal fluid dynamics simulation, the determination of the turbulent Prandtl number (Prt) was a key issue. In this study, we present an attempt to improve the accuracy of thermal fluid dynamics simulations in HVAC units by adjusting the Prt using data assimilation techniques. First, we simultaneously measured the velocity and temperature in the hot and cold air mixing zone of a simple HVAC model using particle image velocimetry and thermocouples. Second, we coupled data assimilation to the thermal fluid simulation model to determine the Prt in the mixing field. Finally, we proposed two functions of the Prt for high velocity and low velocity regions using multidimensional analysis. In the future, we believe that the Prt functions can be applied to thermal fluid simulations of actual HVAC unit to accurately predict performance without conducting prototype experiments, thereby contributing to reducing development cost and time of HVAC unit.

References

1.
Fujisawa
,
N.
,
1999
, “
Air Flow Measurement by Image Analysis and Numerical Calculation of Flow Fields in Heater Unit for Automobiles
,”
Trans. JSME B (in Japanese)
,
65
(
629
), pp.
48
53
.
2.
Misuno
,
Y.
,
Asano
,
H.
,
Tada
,
K.
,
Hirota
,
M.
,
Nakayama
,
H.
, and
Hirayama
,
S.
,
2005
, “
Turbulent Mixing of Hot and Cold Air in HVAC Unit for Automobile
,”
Trans. JSME B (in Japanese)
,
71
(
701
), pp.
215
222
.
3.
Tan
,
L. B.
, and
Yuan
,
Y. J.
,
2022
, “
Computational Fluid Dynamics Simulation and Performance Optimization of an Electrical Vehicle Air-Conditioning System
,”
Alexandria Eng. J.
,
61
(
1
), pp.
315
328
.
4.
Ito
,
K.
,
Liu
,
J.
, and
Onodera
,
J.
,
2017
, “
Investigation of CFD Temperature Prediction for HVAC Units
,”
Proceedings of the 2017 JSAE Annual Spring Congress (in Japanese)
,
Yokohama, Japan
, pp.
691
694
.
5.
Burazer
,
J.
,
Novkovic
,
Ð.
,
Cocic
,
A.
,
Bukurov
,
M.
, and
Lecic
,
M.
,
2022
, “
Numerical Study of the L/D Ratio and Turbulent Prandtl Number Effect on Energy Separation in a Counter Flow Vortex Tube
,”
J. Appl. Fluid Mech.
,
15
(
5
), pp.
1503
1511
.
6.
Blom
,
J.
,
1970
, “
Experimental Determination of the Turbulent Prandtl Number in a Developing Temperature Boundary Layer
,”
4th International Heat Transfer Conference
,
Paris—Versailles, II
, p.
1
, Paper FC2.2.
7.
Reynolds
,
A. J.
,
1975
, “
The Prediction of Turbulent Prandtl and Schmidt Numbers
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1055
1069
.
8.
Browne
,
L. W. B.
, and
Antonia
,
R. A.
,
1983
, “
Measurements of Turbulent Prandtl Number in a Plane Jet
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
663
665
.
9.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number. Where Are We?
ASME J. Heat Transfer
,
116
(
2
), pp.
284
295
.
10.
Morris
,
G. K.
,
Garimella
,
S. V.
, and
Amano
,
R. S.
,
1996
, “
Prediction of Jet Impingement Heat Transfer Using a Hybrid Wall Treatment With Different Turbulent Prandtl Number Functions
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
562
569
.
11.
Churchill
,
S. W.
,
2002
, “
A Reinterpretation of the Turbulent Prandtl Number
,”
Ind. Eng. Chem. Res.
,
41
(
25
), pp.
6393
6401
.
12.
Redjem-Saad
,
L.
,
Ould-Rouiss
,
M.
, and
Lauriat
,
G.
,
2007
, “
Direct Numerical Simulation of Turbulent Heat Transfer in Pipe Flows: Effect of Prandtl Number
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
847
861
.
13.
Venayagamoorthy
,
S. K.
, and
Stretch
,
D. D.
,
2010
, “
On the Turbulent Prandtl Number in Homogeneous Stably Stratified Turbulence
,”
J. Fluid Mech.
,
644
, pp.
359
369
.
14.
Li
,
D.
,
2019
, “
Turbulent Prandtl Number in the Atmospheric Boundary Layer-Where Are We Now?
Atmos. Res.
,
216
, pp.
86
105
.
15.
Basu
,
S.
, and
Holtslag
,
A. A. M.
,
2021
, “
Turbulent Prandtl Number and Characteristic Length Scales in Stably Stratified Flows: Steady-State Analytical Solutions
,”
Environ. Fluid Mech.
,
21
, pp.
1273
1302
.
16.
Xu
,
X.
,
Ooi
,
A.
, and
Richard
,
D. S.
,
2021
, “
Data-Driven Algebraic Models of the Turbulent Prandtl Number for Buoyancy-Affected Flow Near a Vertical Surface
,”
Int. J. Heat Mass Transfer
,
179
, p.
121737
.
17.
The Visualization Society of Japan
,
2002
,
Handbook of Particle Image Velocimetry (in Japanese)
, Morikita Publ., Tokyo.
18.
Khine
,
S. M.
,
Houra
,
T.
, and
Tagawa
,
M.
,
2013
, “
Theoretical Analysis and Its Experimental Validation of Heat-Conduction Error of Temperature Sensors in a Flow Field With Mean-Temperature Gradient
,”
Therm. Sci. Eng. (in Japanese)
,
21
(
3
), pp.
73
81
. doi.org/10.11368/tse.21.73
19.
Kato
,
H.
,
Ishiko
,
K.
, and
Yoshizawa
,
A.
,
2016
, “
Optimization of Parameter Values in the Turbulence Model Aided by Data Assimilation
,”
AIAA J.
,
54
(
5
), pp.
1512
1523
.
20.
Farhat
,
A.
,
Glatt-Holtz
,
N. E.
,
Martinez
,
V. R.
,
McQuarrie
,
S. A.
, and
Whitehead
,
J. P.
,
2020
, “
Data Assimilation in Large Prandtl Rayleigh-Bénard Convection From Thermal Measurements
,”
SIAM J. Appl. Dyn. Syst.
,
19
(
1
), pp.
510
540
.
21.
Shimoyama
,
K.
,
Sato
,
Y.
,
Onodera
,
J.
, and
Liu
,
J.
,
2021
, “
Measurement-Based Strategies for High-Fidelity Thermo-fluid Dynamics Simulation of an Automotive Heat Exchanger
,”
J. Fluid Sci. Technol.
,
16
(
1
), p.
JFST0006
.
22.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
. doi.org/10.1115/1.2960953
23.
Anderson
,
J. D.
,
1995
,
Computational Fluid Dynamics: The Basics With Applications
,
Mc Graw-Hill
,
New York
.
24.
Evensen
,
G.
,
2003
, “
The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation
,”
Ocean Dyn.
,
53
(
4
), pp.
343
367
.
You do not currently have access to this content.