Graphical Abstract Figure

Inverse Transient Heat Transfer with Periodic Boundary Condition

Graphical Abstract Figure

Inverse Transient Heat Transfer with Periodic Boundary Condition

Close modal

Abstract

Accessing temperature data in certain manufacturing and heat treatment processes can be a challenge. Inverse heat conduction problems (IHCPs) offer a solution, allowing us to determine temperatures in inaccessible locations using transient temperature or heat flux measurements from accessible surfaces. This study investigates the capability of a deep neural network (DNN) approach for predicting the front surface temperature and heat flux from the measured back surface temperature and heat flux. The back surface temperature and heat flux are determined using a direct python script code. The inverse solution is then applied with the help of the fully dense DNN approach. To prevent overfit and nongeneralization issues, the regularization and dropout techniques are embedded into the neural network framework. The results reveal that the DNN approach provides more accurate prediction compared to the previous mathematical frameworks such as the conjugate gradient method (CGM). Moreover, the model is tested by noisy data (from 1% to 10%) causing instabilities in the recovered front surface conditions. Despite the presence of noise, the model can overcome this difficulty and is able to predict the desired parameters with a good accordance. Another significant potential of the developed model is its unique capability to deal with the highly periodic heat flux at boundary conditions.

References

1.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Clair
,
C. R. S.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
James Beck
,
New York
.
2.
Alifanov
,
O. M.
,
2012
,
Inverse Heat Transfer Problems
,
Springer Science & Business Media
,
Berlin
.
3.
Ozisik
,
M. N.
,
2018
,
Inverse Heat Transfer: Fundamentals and Applications
,
Routledge
,
New York
.
4.
Diller
,
T. E.
,
1993
, “Advances in Heat Flux Measurements,”
Advances in Heat Transfer Transfer
,
J. P.
Hartnett
, ed.,
Elsevier
,
New York
, pp.
279
368
.
5.
Childs
,
P.
,
Greenwood
,
J.
, and
Long
,
C.
,
1999
, “
Heat Flux Measurement Techniques
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
213
(
7
), pp.
655
677
.
6.
Tong
,
A.
,
2001
, “
Improving the Accuracy of Temperature Measurements
,”
Sens. Rev.
,
21
(
3
), pp.
193
198
.
7.
Childs
,
P.
, and
Hartnett
,
J.P.
, Ed.
,
2003
,
Advances in temperature measurement
,
Elsevier
,
New York
, pp.
111
181
.
8.
Saidi
,
A.
, and
Kim
,
J.
,
2004
, “
Heat Flux Sensor With Minimal Impact on Boundary Conditions
,”
Exp. Therm. Fluid. Sci.
,
28
(
8
), pp.
903
908
.
9.
Loulou
,
T.
, and
Scott
,
E. P.
,
2006
, “
An Inverse Heat Conduction Problem With Heat Flux Measurements
,”
Int. J. Numer. Methods Eng.
,
67
(
11
), pp.
1587
1616
.
10.
Sparrow
,
E.
,
Haji-Sheikh
,
A.
, and
Lundgren
,
T.
,
1964
, “
The Inverse Problem in Transient Heat Conduction
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
369
375
.
11.
Jarny
,
Y.
,
Ozisik
,
M.
, and
Bardon
,
J.
,
1991
, “
A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2911
2919
.
12.
Pasquetti
,
R.
, and
Le Niliot
,
C.
,
1991
, “
“Boundary Element Approach for Inverse Heat Conduction Problems: Application to a Bidimensional Transient Numerical Experiment
,”
Numer. Heat Transfer, Part B
,
20
(
2
), pp.
169
189
.
13.
Yang
,
C.-Y.
,
1996
, “
The Boundary Estimation in Two-Dimensional Inverse Heat Conduction Problems
,”
J. Phys. D: Appl. Phys.
,
29
(
2
), pp.
333
339
.
14.
Huang
,
C.-H.
, and
Wang
,
S.-P.
,
1999
, “
A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method
,”
Int. J. Heat Mass Transfer
,
42
(
18
), pp.
3387
3403
.
15.
Emery
,
A.
,
Nenarokomov
,
A. V.
, and
Fadale
,
T. D.
,
2000
, “
Uncertainties in Parameter Estimation: The Optimal Experiment Design
,”
Int. J. Heat Mass Transfer
,
43
(
18
), pp.
3331
3339
.
16.
Monde
,
M.
,
Arima
,
H.
, and
Mitsutake
,
Y.
,
2003
, “
Estimation of Surface Temperature and Heat Flux Using Inverse Solution for One-Dimensional Heat Conduction
,”
ASME J. Heat Transfer
,
125
(
2
), pp.
213
223
.
17.
Xue
,
X.
,
Luck
,
R.
, and
Berry
,
J. T.
,
2005
, “
Comparisons and Improvements Concerning the Accuracy and Robustness of Inverse Heat Conduction Algorithms
,”
Inverse Prob. Sci. Eng.
,
13
(
2
), pp.
177
199
.
18.
Frankel
,
J.
,
Osborne
,
G.
, and
Taira
,
K.
,
2006
, “
Stabilization of Ill-Posed Problems Through Thermal Rate Sensors
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
238
246
.
19.
Matsumoto
,
M.
, and
Nishimura
,
T.
,
1998
, “
Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator
,”
ACM Trans. Model. Comput. Simul.
,
8
(
1
), pp.
3
30
.
20.
Biczó
,
Z.
,
Szénási
,
S.
, and
Felde
,
I.
, “
A Novel Machine Learning Solution for the Inverse Heat Conduction Problem with Synthetic Datasets
,”
Proc. 2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)
,
Timisoara, Romania
,
May 23–26
.
21.
Tanyu
,
D. N.
,
Ning
,
J.
,
Freudenberg
,
T.
,
Heilenkötter
,
N.
,
Rademacher
,
A.
,
Iben
,
U.
, and
Maass
,
P.
,
2023
, “
Deep Learning Methods for Partial Differential Equations and Related Parameter Identification Problems
,”
Inverse Prob.
,
39
(
10
), p.
103001
.
22.
Gao
,
H.
,
Zuo
,
W.
,
Feng
,
Z.
,
Yang
,
J.
,
Li
,
T.
, and
Hu
,
P.
,
2022
, “
DHEM: A Deep Heat Energy Method for Steady-State Heat Conduction Problems
,”
J. Mech. Sci. Technol.
,
36
(
11
), pp.
5777
5791
.
23.
Zhu
,
F.
,
Chen
,
J.
,
Han
,
Y.
, and
Ren
,
D.
,
2022
, “
A Deep Learning Method for Estimating Thermal Boundary Condition Parameters in Transient Inverse Heat Transfer Problem
,”
Int. J. Heat Mass Transfer
,
194
(
1
), p.
123089
.
24.
Gao
,
B.
,
Yang
,
Q.
,
Pan
,
W.
,
Ye
,
Y.
,
Yi
,
F.
, and
Meng
,
S.
,
2022
, “
A Regularization Method for Inverse Heat Transfer Problems Using Dynamic Bayesian Networks With Variable Structure
,”
Int. J. Therm. Sci.
,
182
(
1
), p.
107837
.
25.
Haolong
,
C.
, and
Zhanli
,
L.
,
2021
, “
Solving the Inverse Heat Conduction Problem Based on Data Driven Model
,”
Chin. J. Comput. Mech.
,
3
(
1
), pp.
272
279
.
26.
Mostajeran
,
F.
, and
Mokhtari
,
R.
,
2022
, “
DeepBHCP: Deep Neural Network Algorithm for Solving Backward Heat Conduction Problems
,”
Comput. Phys. Commun.
,
272
(
1
), p.
108236
.
27.
Qian
,
W.
,
Hui
,
X.
,
Wang
,
B.
,
Zhang
,
Z.
,
Lin
,
Y.
, and
Yang
,
S.
,
2023
, “
Physics-Informed Neural Network for Inverse Heat Conduction Problem
,”
Heat Transfer Res.
,
54
(
4
), pp.
65
76
.
28.
Zeng
,
Y.
,
2021
, “
A Dimension-Reduced Neural Network-Assisted Approximate Bayesian Computation for Inverse Heat Conduction Problems
,”
Transp. Saf. Environ.
,
3
(
3
), p.
tdab011
.
29.
Jiang
,
X.
, and
Wang
,
H.
,
2021
, “A Physics-Data-Driven Bayesian Method for Heat Conduction Problems,” arXiv:2109.00996.
30.
Szénási
,
S.
,
Fried
,
Z.
, and
Felde
,
I.
, “
Training of Artificial Neural Network to Solve the Inverse Heat Conduction Problem
,”
Proc. 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI)
,
Herlany, Slovakia
,
Jan. 23–25
, IEEE, pp.
293
298
.
31.
Xing
,
Z.
,
Cheng
,
H.
, and
Cheng
,
J.
,
2023
, “
Deep Learning Method Based on Physics-Informed Neural Network for 3D Anisotropic Steady-State Heat Conduction Problems
,”
Mathematics
,
11
(
19
), p.
4049
.
32.
Masrouri
,
M.
, and
Tahsini
,
A.
,
2023
, “
A Comparative Experimental Study on Inverse Identification of an Industrial Heat Gun Using Deep Learning and Two Inverse Heat Transfer Techniques
,”
J. Therm. Anal. Calorim.
,
148
(
18
), pp.
9597
9608
.
33.
Zhang
,
B.
,
Wang
,
F.
, and
Qiu
,
L.
,
2023
, “
Multi-Domain Physics-Informed Neural Networks for Solving Transient Heat Conduction Problems in Multilayer Materials
,”
J. Appl. Phys.
,
133
(
24
), p.
245103
.
34.
Jiang
,
X.
,
Wang
,
X.
,
Wen
,
Z.
,
Li
,
E.
, and
Wang
,
H.
,
2023
, “
Practical Uncertainty Quantification for Space-Dependent Inverse Heat Conduction Problem via Ensemble Physics-Informed Neural Networks
,”
Int. Commun. Heat Mass Transfer
,
147
(
1
), p.
106940
.
35.
Allard
,
D.
, and
Najafi
,
H.
, “
A Novel Approach for Solving Inverse Heat Conduction Problems Using Genetic Algorithm
,”
Proc. Heat Transfer Summer Conference
,
Washington, DC
,
July 10–12
.
36.
Zhu
,
F.
,
Chen
,
J.
, and
Han
,
Y.
,
2022
, “
A Multiple Regression Convolutional Neural Network for Estimating Multi-Parameters Based on Overall Data in the Inverse Heat Transfer Problem
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
5
), p.
051003
.
37.
Zhou
,
J.
,
Zhang
,
Y.
,
Chen
,
J.
, and
Feng
,
Z.
,
2010
, “
Inverse Heat Conduction Using Measured Back Surface Temperature and Heat Flux
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
95
103
.
You do not currently have access to this content.