Abstract

This work summarizes studies that experimentally investigated the effect of rotation on heat transfer in the 180 deg tip and hub turns of cooling channels with various aspect ratios (ARs). The studied AR ranges from 1:4 to 4:1, which is the typical range within turbine blades. In addition to the smooth surface case (baseline case), the cases with 45 deg angled ribs and turning vanes are also included in this work. For several designs, the effect of channel orientation with respect to the angle of rotation is also investigated. This work covers a wide range of Reynolds and buoyancy numbers. The rib turbulators are found to have higher heat transfer enhancement and larger disturbance on the flow impingement on the tip and hub walls in channels with a wider aspect ratio. The rotational effect is reduced by the presence of ribs and turning vanes, and it is also reduced in the blade-shaped channels with the angled rotation feature. The tip wall heat transfer is increased by rotation due to the pumping effect from the centrifugal force; however, the hub wall heat transfer is reduced. The effect of rotation is most prominent in the first pass of the channels and is gradually mitigated in the following pass after the turns. This work provides stationary and rotational heat transfer coefficients in the tip and hub turning regions in blades, and heat transfer correlations for a variety of cooling channel designs are generated, which is of benefit to the gas turbine community.

References

1.
Han
,
J.-C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113001
.
2.
Taslim
,
M. E.
,
Bondi
,
L. A.
, and
Kercher
,
D. M.
,
1991
, “
An Experimental Investigation of Heat Transfer in an Orthogonally Rotating Channel Roughened With 45 deg Criss-Cross Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
346
353
.
3.
Han
,
J.-C.
,
Zhang
,
Y.-M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
912
920
.
4.
Metzger
,
D. E.
,
Plevich
,
C. V.
, and
Fan
,
C. S.
,
1984
, “
Pressure Loss Through Sharp 180 deg Turns in Smooth Rectangular Channels
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
677
681
.
5.
Metzger
,
D. E.
, and
Sahm
,
M. K.
,
1986
, “
Heat Transfer Around Sharp 180 deg Turns in Smooth Rectangular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
108
(
3
), pp.
500
506
.
6.
Schüler
,
M.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2009
, “
Experimental Investigations of Pressure Loss and Heat Transfer in a 180 Bend of a Ribbed Two-Pass Internal Cooling Channel With Engine-Similar Cross-Sections
,”
J. Power Energy
,
223
(
6
), pp.
709
719
.
7.
Schüler
,
M.
,
Dreher
,
H. M.
,
Neumann
,
S. O.
,
Weigand
,
B.
, and
Elfert
,
M.
,
2011
, “
Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-Similar Two-Pass Internal Cooling Channel With Smooth and Ribbed Walls
,”
ASME J. Turbomach.
,
134
(
2
), p.
021021
.
8.
Chu
,
H.-C.
,
Chen
,
H.-C.
, and
Han
,
J.-C.
,
2017
, “
Numerical Simulation of Flow and Heat Transfer in Rotating Cooling Passage With Turning Vane in Hub Region
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
2
), p.
021701
.
9.
Liu
,
Y.-H.
,
Huh
,
M.
,
Han
,
J.-C.
, and
Chopra
,
S.
,
2008
, “
Heat Transfer in a Two-Pass Rectangular Channel (AR = 1:4) Under High Rotation Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
8
), p.
081701
.
10.
Huh
,
M.
,
Liu
,
Y.-H.
,
Han
,
J.-C.
, and
Chopra
,
S.
,
2009
, “
Rib Spacing Effect on Heat Transfer in Rectangular Channel at High Rotation Numbers
,”
AIAA J. Thermophys. Heat Transfer
,
23
(
2
), pp.
294
304
.
11.
Huh
,
M.
,
Liu
,
Y.-H.
, and
Han
,
J.-C.
,
2009
, “
Effect of Rib Height on Heat Transfer in a Two Pass Rectangular Channel (AR = 1:4) With a Sharp Entrance at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4635
4649
.
12.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y.-H.
, and
Han
,
J.-C.
,
2010
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR = 2:1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021001
.
13.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J.-C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.
14.
Lei
,
J.
,
Han
,
J.-C.
, and
Huh
,
M.
,
2012
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR = 2:1) at High Rotation Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
9
), p.
091901
.
15.
Chen
,
I.-L.
,
Sahin
,
I.
,
Wright
,
L. M.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2021
, “
Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With a Variable Aspect Ratio
,”
ASME J. Turbomach.
,
144
(
2
), p.
021011
.
16.
Chen
,
I.-L.
,
Sahin
,
I.
,
Wright
,
L. M.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2022
, “
Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With Various 45 deg Rib Orientations
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091009
.
17.
Rallabandi
,
A.
,
Lei
,
J.
,
Han
,
J.-C.
,
Azad
,
S.
, and
Lee
,
C.-P.
,
2014
, “
Heat Transfer Measurements in Rotating Blade–Shape Serpentine Coolant Passage With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
.
18.
Wright
,
L. M.
,
Yang
,
S.-F.
,
Wu
,
H.-W.
,
Han
,
J.-C.
,
Lee
,
C.-P.
,
Azad
,
S.
, and
Um
,
J.
,
2020
, “
Heat Transfer in a Rotating, Blade-Shaped Serpentine Cooling Passage With Discrete Ribbed Walls at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
1
), p.
012002
.
19.
Lei
,
J.
,
Li
,
S.-J.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2013
, “
Heat Transfer in Rotating Multipass Rectangular Ribbed Channel With and Without a Turning Vane
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
4
), p.
041903
.
20.
Lei
,
J.
,
Li
,
S.-J.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2014
, “
Effect of a Turning Vane on Heat Transfer in Rotating Multipass Rectangular Smooth Channel
,”
AIAA J. Thermophys. Heat Transfer
,
28
(
3
), pp.
417
427
.
21.
Chen
,
I.-L.
,
Wright
,
L. M.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2022
, “
Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Channel With a Turning Vane
,”
AIAA J. Thermophys. Heat Transfer
,
15
(
2
), p.
021014
.
22.
Chen
,
I.-L.
,
Wright
,
L. M.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2022
, “Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With Various 45 deg Rib Turbulators and a Tip Turning Vane,” ASME Paper No. GT2022-82035.
23.
Chen
,
A. F.
,
Wu
,
H.-W.
,
Wang
,
N.
, and
Han
,
J.-C.
,
2018
, “
Heat Transfer in a Rotating Cooling Channel (AR = 2:1) With Rib Turbulators and a Tip Turning Vane
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
10
), p.
102007
.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.