Abstract

This article presents a time-efficient method to optimize the positions of film cooling holes on a gas turbine blade's squealer tip for cooling and aerodynamic performance. A computational approach is employed for the optimization, including validations against experiments. Five discrete film cooling holes are considered, and two different blowing ratios of 0.4 and 1.0 are studied. The positions of cooling holes on the tip along the tangential direction are varied as the input parameters of optimization. The multi-objective optimization uses an algorithm with an artificial neural network for fast fitness function predictions. The best cooling configuration found by the optimization achieves a 13.43% reduction in total heat flux and a 0.4% increase in aerodynamic loss when the blowing rate is 1.0. Including the casing relative motion in the computations results in a total pressure loss coefficient increase of about 8% for both blowing ratios. For M = 1.0, imposing the casing's motion results in a 10.2% reduction in total heat transfer to the tip compared to the stationary casing. For the lower blowing rate of 0.4, the total heat flux reduction to the tip is 12.0% because of the imposed casing motion. Hence, the cooling effectiveness can be improved by employing the particular position optimization method presented in this study. The results suggest that experimental and computational heat transfer studies on cooled turbine blade tips, especially in cascade arrangements, need to consider the relative motion of the blade tip.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Saha
,
A. K.
,
Acharya
,
S.
,
Bunker
,
R.
, and
Prakash
,
C.
,
2006
, “
Blade Tip Leakage Flow and Heat Transfer With Pressure-Side Winglet
,”
Int. J. Rotating Mach.
,
2006
, pp.
1
15
.
3.
Azad
,
G. S.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
,
124
(
3
), pp.
452
459
.
4.
Acharya
,
S.
,
Yang
,
H.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
, “
Numerical Simulation of Film Cooling on the Tip of a Gas Turbine Blade
,”
Turbo Expo: Power for Land Sea, and Air
,
Amsterdam, The Netherlands
,
June 3–6
, Vol. 36088, pp.
1051
1062
.
5.
Key
,
N. L.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.
6.
Schabowski
,
Z.
,
Hodson
,
H.
,
Giacche
,
D.
,
Power
,
B.
, and
Stokes
,
M. R.
,
2014
, “
Aeromechanical Optimization of a Winglet-Squealer Tip for an Axial Turbine
,”
ASME J. Turbomach.
,
136
(
7
), p.
071004
.
7.
Dey
,
D.
, and
Camci
,
C.
,
2001
, “
Aerodynamic Tip Desensitization of an Axial Turbine Rotor Using Tip Platform Extensions
,”
Turbo Expo: Power for Land Sea, and Air
,
New Orleans, LA
,
June 4–7
, Vol. 78507, p. V001T03A069.
8.
Ledezma
,
G. A.
,
Allen
,
J.
, and
Bunker
,
R. S.
,
2013
, “
An Experimental and Numerical Investigation Into the Effects of Squealer Blade Tip Modifications on Aerodynamic Performance
,”
ASME Turbine Blade Tip Symposium
,
Hamburg, Germany
,
Sept. 30–Oct. 3
, Vol.56079, p. V001T03A002.
9.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2017
, “
Investigations Into Heat Transfer and Film Cooling Effect on a Squealer-Winglet Blade Tip
,”
Int. J. Heat Mass Transfer
,
115
, pp.
955
978
.
10.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2019
, “
Influences of a Multi-Cavity Tip on the Blade Tip and the Over Tip Casing Aerothermal Performance in a High-Pressure Turbine Cascade
,”
Appl. Therm. Eng.
,
147
, pp.
347
360
.
11.
Jiang
,
S.
,
Li
,
Z.
, and
Li
,
J.
,
2019
, “
Effects of the Squealer Winglet Structures on the Heat Transfer Characteristics and Aerodynamic Performance of Turbine Blade Tip
,”
Int. J. Heat Mass Transfer
,
139
, pp.
860
872
.
12.
Zhou
,
Z.
,
Chen
,
S.
,
Li
,
W.
, and
Wang
,
S.
,
2019
, “
Thermal Performance of Blade Tip and Casing Coolant Injection on a Turbine Blade With Cavity and Winglet-Cavity Tip
,”
Int. J. Heat Mass Transfer
,
130
, pp.
585
602
.
13.
Yan
,
X.
,
Yu
,
J.
,
Ye
,
M.
, and
He
,
K.
,
2023
, “
Reduction of Heat Transfer and Improvement of Film Cooling Effect on Squealer Tip With Multi-Rib Design Concept
,”
J. Mech. Sci. Technol.
,
37
(
8
), pp.
4361
4374
.
14.
Wang
,
J.
,
Sundén
,
B.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2012
, “
Influence of Different Rim Widths and Blowing Ratios on Film Cooling Characteristics for a Blade Tip
,”
ASME J. Heat Transfer
,
134
(
6
), p.
061701
.
15.
Sakaoglu
,
S.
, and
Kahveci
,
H. S.
,
2019
, “
Effect of Cavity Depth on Thermal Performance of a Cooled Blade Tip Under Rotation
,”
Int. J. Heat Mass Transfer
,
143
, p.
118561
.
16.
Eriksen
,
V. L.
, and
Goldstein
,
R. J.
,
1974
, “
Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
239
245
.
17.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2018
, “
Effect of Ejection Angle and Blowing Ratio on Heat Transfer and Film Cooling Effect on a Winglet Tip
,”
Int. J. Heat Mass Transfer
,
125
, pp.
357
374
.
18.
Kim
,
Y. W.
, and
Metzger
,
D. E.
,
1995
, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,”
ASME J. Turbomach.
,
117
(
1
), pp.
12
21
.
19.
Cunliang
,
L. I. U.
,
Zhang
,
F.
,
Zhang
,
S.
,
Qingqing
,
S. H. I.
, and
Hui
,
S. O. N. G.
,
2022
, “
Experimental Investigation of the Full Coverage Film Cooling Effectiveness of a Turbine Blade With Shaped Holes
,”
Chin. J. Aeronaut.
,
35
(
3
), pp.
297
308
.
20.
Wang
,
C.
,
Zhang
,
J.
, and
Zhou
,
J.
,
2016
, “
Optimization of a Fan-Shaped Hole to Improve Film Cooling Performance by RBF Neural Network and Genetic Algorithm
,”
Aerosp. Sci. Technol.
,
58
, pp.
18
25
.
21.
Zhang
,
B. L.
,
Zhu
,
H. R.
,
Yao
,
C. Y.
,
Liu
,
C. L.
, and
Zhang
,
Z.
,
2021
, “
Investigation on Film Cooling and Aerodynamic Performance of Blade Tip With Tangential Jet Cooling Scheme at Transonic Flow
,”
Aerosp. Sci. Technol.
,
118
, p.
107067
.
22.
Cho
,
H. H.
, and
Goldstein
,
R. J.
,
1995
, “
Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part II—On the Exposed Surface
,”
ASME J. Turbomach.
,
117
(
3
), pp.
451
460
.
23.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
24.
Wang
,
J.
,
Sundén
,
B.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2015
, “
Film Cooling Effects on the Tip Flow Characteristics of a Gas Turbine Blade
,”
Propuls. Power Res.
,
4
(
1
), pp.
9
22
.
25.
Rao
,
N. M.
, and
Camci
,
C.
,
2004
, “
Axial Turbine Tip Desensitization by Injection From a Tip Trench: Part 2—Leakage Flow Sensitivity to Injection Location
,”
Turbo Expo: Power for Land Sea, and Air
,
Veinna, Austria
,
June 14–17
, Vol. 41707, pp.
1089
1098
.
26.
Cheng
,
F. N.
,
Zhang
,
J. Z.
,
Chang
,
H. P.
, and
Zhang
,
J. Y.
,
2018
, “
Investigations of Film-Cooling Effectiveness on the Squealer Tip With Various Film-Hole Configurations in a Linear Cascade
,”
Int. J. Heat Mass Transfer
,
117
, pp.
344
357
.
27.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2004
, “
Numerical Prediction of Film Cooling and Heat Transfer With Different Film-Hole Arrangements on the Plane and Squealer Tip of a Gas Turbine Blade
,”
Turbo Expo: Power for Land Sea, and Air
,
Vienna, Austria
,
June 14–17
, Vol. 41685, pp.
177
187
.
28.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
521
530
.
29.
He
,
K.
,
2017
, “
Investigations of Film Cooling and Heat Transfer on a Turbine Blade Squealer Tip
,”
Appl. Therm. Eng.
,
110
, pp.
630
647
.
30.
Tong
,
F.
,
Gou
,
W.
,
Li
,
L.
,
Liu
,
Q.
,
Yue
,
Z.
, and
Xie
,
G.
,
2015
, “
Investigation on Heat Transfer of a Rotor Blade Tip With Various Film Cooling Holes Arrangements and Groove Depths
,”
Adv. Mech. Eng.
,
7
(
2
), p.
1687814014568499
.
31.
Park
,
J. S.
,
Lee
,
D. H.
,
Rhee
,
D. H.
,
Kang
,
S. H.
, and
Cho
,
H. H.
,
2014
, “
Heat Transfer and Film Cooling Effectiveness on the Squealer Tip of a Turbine Blade
,”
Energy
,
72
, pp.
331
343
.
32.
Wang
,
Y.
,
Song
,
Y.
,
Yu
,
J.
, and
Chen
,
F.
,
2019
, “
Effect of the Injection Orientation and Position on the Leakage Flow in a Honeycomb-Tip Turbine Cascade
,”
Int. J. Heat Mass Transfer
,
144
, p.
118633
.
33.
Senel
,
C. B.
,
Maral
,
H.
,
Kavurmacioglu
,
L. A.
, and
Camci
,
C.
,
2018
, “
An Aerothermal Study of the Influence of Squealer Width and Height Near a HP Turbine Blade
,”
Int. J. Heat Mass Transfer
,
120
, pp.
18
32
.
34.
Yıldız
,
F.
,
2019
, “
Position Optimization of Film Cooling Holes on a Squealer Turbine Blade Tip
,”
Master's thesis
,
Marmara University
,
İstanbul, Turkiye
, p.
28243114
.
35.
Wilcox
,
D. C.
,
1993
, “
Comparison of Two-Equation Turbulence Models for Boundary Layers With Pressure Gradient
,”
AIAA J.
,
31
(
8
), pp.
1414
1421
.
36.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
37.
Camci
,
C.
,
2004
,
VKI Lecture Series on Turbine Blade Tip Design and Tip Clearance Treatment
, Vol.
VKI-LS 2004-02
,
von Karman Institute for Fluid Dynamics
,
Brussels, Belgium
, pp.
1
26
.
38.
Turgut
,
ÖH
, and
Camci
,
C.
,
2016
, “
Factors Influencing Computational Predictability of Aerodynamic Losses in a Turbine Nozzle Guide Vane Flow
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051103
.
39.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part I—Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
,
123
(
4
), pp.
687
696
.
40.
“Incompressible Wall Heat Flux Utility for Openfoam®, wallHeatFluxIncompresible,” https://github.com/Himscipy/wallHeatFluxIncompressible, Accessed November 8, 2024.
41.
Đozić
,
D. J.
, and
Urošević
,
B. D. G.
,
2019
, “
Application of Artificial Neural Networks for Testing Long-Term Energy Policy Targets
,”
Energy
,
174
, pp.
488
496
.
42.
Poort
,
J. P.
,
Ramdin
,
M.
,
van Kranendonk
,
J.
, and
Vlugt
,
T. J.
,
2019
, “
Solving Vapor-Liquid Flash Problems Using Artificial Neural Networks
,”
Fluid Phase Equilib.
,
490
, pp.
39
47
.
43.
Taheri
,
M. H.
,
Abbasi
,
M.
, and
Jamei
,
M. K.
,
2019
, “
Using Artificial Neural Network for Computing the Development Length of MHD Channel Flows
,”
Mech. Res. Commun.
,
99
, pp.
8
14
.
44.
Deveci
,
K.
,
Maral
,
H.
,
Senel
,
C. B.
,
Alpman
,
E.
,
Kavurmacioglu
,
L.
, and
Camci
,
C.
,
2018
, “
Aerothermal Optimization of Squealer Geometry in Axial Flow Turbines Using Genetic Algorithm
,”
J. Therm. Eng.
,
4
(
3
), pp.
1896
1911
.
45.
Maral
,
H.
,
Alpman
,
E.
,
Kavurmacıoğlu
,
L.
, and
Camci
,
C.
,
2019
, “
A Genetic Algorithm Based Aerothermal Optimization of Tip Carving for an Axial Turbine Blade
,”
Int. J. Heat Mass Transfer
,
143
, p.
118419
.
46.
Maral
,
H.
,
Şenel
,
C. B.
,
Deveci
,
K.
,
Alpman
,
E.
,
Kavurmacıoğlu
,
L.
, and
Camci
,
C.
,
2020
, “
A Genetic Algorithm Based Multi-Objective Optimization of Squealer Tip Geometry in Axial Flow Turbines: A Constant Tip Gap Approach
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021402
.
47.
“Octave,” https://www.gnu.org/software/octave/, Accessed January 22, 2020.
48.
Camara
,
M. V. O.
,
Ribeiro
,
G. M.
, and
Tosta
,
M. D. C. R.
,
2018
, “
A Pareto Optimal Study for the Multi-Objective Oil Platform Location Problem With NSGA-II
,”
J. Pet. Sci. Eng.
,
169
, pp.
258
268
.
49.
Han
,
H.
,
Yu
,
R.
,
Li
,
B.
, and
Zhang
,
Y.
,
2019
, “
Multi-Objective Optimization of Corrugated Tube Inserted With Multi-Channel Twisted Tape Using RSM and NSGA-II
,”
Appl. Therm. Eng.
,
159
, p.
113731
.
50.
Vo-Duy
,
T.
,
Duong-Gia
,
D.
,
Ho-Huu
,
V.
,
Vu-Do
,
H. C.
, and
Nguyen-Thoi
,
T.
,
2017
, “
Multi-Objective Optimization of Laminated Composite Beam Structures Using NSGA-II Algorithm
,”
Compos. Struct.
,
168
, pp.
498
509
.
51.
Beer
,
W.
,
2008
, “
Optimization of a Compound Lean Turbine Blade in a Linear Cascade
,”
Ph.D. dissertation
,
Technischen Universitat Wien
,
Wien, Austria
.
52.
Klaput
,
T.
,
1996
, “
Control of Near Wall Flow on an Isolated Airfoil at High Angle of Attack Using Piezoelectric Surface Vibration Elements
,”
Master's thesis
,
Pennsylvania State University
,
State College, PA
.
53.
Somers
,
D. M.
, and
Maughmer
,
M. D.
,
1990
, “
The SM701 Airfoil
,”
Airfoils, Inc.
.
54.
Somers
,
D. M.
, and
Maughmer
,
M. D.
,
1992
, “
The SM701 Airfoil: An Airfoil for World-Class Sailplanes
,”
Technical Soaring
,
16
(
3
), pp.
70
77
.
55.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
56.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
You do not currently have access to this content.