Abstract

Drop–wall interaction is a complex phenomenon encountered in diverse industrial applications. An important example is fuel droplets impinging on a high-temperature ignition plug in a direct-injection compression-ignition engine. The ignition plug, comprised of heat-resistant materials, will experience thermal shock due to abrupt temperature changes. The ensuing temperature fluctuation in the solid wall induces thermal stress, and if this stress surpasses the material's strength in that mode, failure can occur. Therefore, it is imperative to analyze the temperature dynamics on the high-temperature surface to enhance material durability. This study focuses on drop–wall interactions in the engine environment. Utilizing the Smoothed Particle Hydrodynamics (SPH) method, this research simulates fuel droplet impingement on an ignition plug with various materials to characterize heat transfer, thermal penetration, and temperature distributions in the heated wall. The investigation also delves into the behavior of ceramic material, specifically silicon nitride, assessing its thermomechanical stress and durability based on the stress–number of cycles (S-N) curve. Thermal stress is computed by considering temperature gradients and material properties, while mechanical stress is evaluated based on the bending momentum and momentum flux induced by the spray. A parametric study explores diverse materials such as tungsten carbide, iron, stainless steel, carbon steel, and aluminum. Results indicate that thermal stress outweighs bending and spray-induced stress. Moreover, the analysis reveals that silicon nitride exhibits the lowest thermal stress distribution and superior durability, potentially capable of operating for infinite cycles under engine-relevant conditions.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kim
,
K. S.
,
Szedlmayer
,
M. T.
,
Kweon
,
C.-B. M.
,
Kruger
,
K. M.
,
Gibson
,
J. A.
,
Lindsey
,
C. A.
,
Meininger
,
R. D.
,
Musser
,
M. R.
, and
Giddings
,
A. V.
,
2017
, “
The Effect of Outside Air Temperature and Cetane Number on Combustion and Performance in a UAV Diesel Engine at Various Altitude Conditions
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
,
July 10–12
, p.
5027
.
2.
Szedlmayer
,
M. T.
,
Kim
,
K. S.
,
Kweon
,
C.-B. M.
,
Kruger
,
K. M.
,
Gibson
,
J. A.
,
Lindsey
,
C. A.
,
Meininger
,
R. D.
,
Musser
,
M. R.
, and
Giddings
,
A. V.
,
2017
, “
The Effect of Fuel Aromatic Content on Combustion in a UAV Diesel Engine
,”
53rd AIAA/SAE/ASEE Joint Propulsion Conference
,
Atlanta, GA
, July 10–12.
3.
Ryu
,
J. I.
,
Motily
,
A. H.
,
Lee
,
T.
,
Scarcelli
,
R.
,
Som
,
S.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2020
, “
Ignition Enhancement of F-24 Jet Fuel by a Hot Surface for Aircraft Propulsion Systems
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
, Jan. 6–10.
4.
Kang
,
S.-G.
,
Ryu
,
J. I.
,
Motily
,
A. H.
,
Numkiatsakul
,
P.
,
Lee
,
T.
,
Kriven
,
W. M.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2023
, “
Transient Thermo-Mechanical Stress Analysis of hot Surface Probe Using Sequentially Coupled CFD-FEA Approach
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121001
.
5.
Kang
,
S.-G.
,
Ryu
,
J. I.
,
Motily
,
A. H.
,
Numkiatsakul
,
P.
,
Lee
,
T.
,
Kriven
,
W. M.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2022
, “
Thermomechanical Characterization of Hot Surface Ignition Device Using Phenomenological Heat Flux Model
,”
J. Propul. Power
,
38
(
4
), pp.
656
670
.
6.
Motily
,
A.
,
2020
, “
Evaluation of Hot Surface Ignition Device Performance With High-Pressure Kerosene Fuel Sprays
,”
M.S. thesis
,
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
,
Urbana-Champaign, IL
.
7.
Oprea
,
C.
,
Wong
,
F.
,
Karimi Sharif
,
H.
,
Blair
,
C.
,
Welch
,
A.
, and
Troczynski
,
T.
,
2012
, “
Degradation of Silicon Nitride Glow Plugs in Various Environments Part 3: NGDI Engine
,”
Int. J. Appl. Ceram. Technol.
,
9
(
2
), pp.
272
279
.
8.
Karpe
,
B.
,
Klobčar
,
D.
,
Kovač
,
J.
,
Bizjak
,
M.
,
Kosec
,
B.
, and
Veskovič-Bukudur
,
S.
,
2020
, “
Failure Analysis of Diesel Engine Glow Plugs
,”
Eng. Fail. Anal.
,
109
, p.
104394
.
9.
Formaggia
,
L.
,
Micheletti
,
S.
,
Sacco
,
R.
, and
Veneziani
,
A.
,
2007
, “
Mathematical Modelling and Numerical Simulation of a Glow-Plug
,”
Appl. Numer. Mathe.
,
57
(
10
), pp.
1125
1144
.
10.
Cheng
,
X. S.
, and
Wallace
,
J. S.
,
2012
, “
Transient Behavior of Glow Plugs in Direct-Injection Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092802
.
11.
Endiz
,
M. S.
,
Özcan
,
M.
,
Erişmiş
,
M. A.
,
Yağci
,
M.
, and
Günay
,
H.
,
2015
, “
The Simulation and Production of Glow Plugs Based on Thermal Modeling
,”
Turkish J. Electr. Eng. Comput. Sci.
,
23
, pp.
2197
2207
.
12.
Mitsuoka
,
T.
,
2013
, “Advanced Ceramic Glow Plugs,”
Ceramics Science and Technology, 4: Application
, pp.
191
206
.
13.
Desantes
,
J. M.
,
Payri
,
R.
,
Salvador
,
F. J.
, and
Gimeno
,
J.
,
2006
, “
Prediction of Spray Penetration by Means of Spray Momentum Flux
,” SAE Technical Paper(2006-01-1387), p.
12
.
14.
Payri
,
R.
,
García
,
J.
,
Salvador
,
F.
, and
Gimeno
,
J.
,
2005
, “
Using Spray Momentum Flux Measurements to Understand the Influence of Diesel Nozzle Geometry on Spray Characteristics
,”
Fuel
,
84
(
5
), pp.
551
561
.
15.
Li
,
B.
,
Hu
,
M.
,
Zhang
,
B.
,
Zhang
,
C.
,
Liu
,
Z.
,
Nie
,
L.
, and
Cao
,
W.
,
2021
, “
Theoretical Analysis of the Mechanical Effects of Water Jet
,”
Geotech. Geol. Eng.
,
39
(
1
), pp.
237
246
.
16.
Subedi
,
K. K.
, and
Kong
,
S.-C.
,
2022
, “
Modeling the Effects of Drop Impingement Frequency on Heated Walls at Engine Conditions
,”
SAE Int. J. Adv. Curr. Pract. Mobility
,
5
(
2022-01-0508
), pp.
678
684
.
17.
Subedi
,
K. K.
, and
Kong
,
S.-C.
,
2022
, “
Numerical Study on the Leidenfrost Behavior of a Droplet Stream Impinging on a Heated Wall
,”
Phys. Rev. E
,
106
(
1
), p.
015106
.
18.
Yang
,
X.
,
Liu
,
M.
, and
Peng
,
S.
,
2014
, “
Smoothed Particle Hydrodynamics Modeling of Viscous Liquid Drop Without Tensile Instability
,”
Comput. Fluids
,
92
, pp.
199
208
.
19.
Xiu-Feng
,
Y.
, and
Mou-Bin
,
L.
,
2012
, “
Improvement on Stress Instability in Smoothed Particle Hydrodynamics
,”
Acta Phys. Sin.
,
61
, p.
22
.
20.
Reddy
,
J.
, and
Chin
,
C.
,
1998
, “
Thermomechanical Analysis of Functionally Graded Cylinders and Plates
,”
J. Therm. Stresses
,
21
(
6
), pp.
593
626
.
21.
Zhu
,
G. X.
,
Zou
,
L.
,
Chen
,
Z.
,
Wang
,
A. M.
, and
Liu
,
M. B.
,
2018
, “
An Improved SPH Model for Multiphase Flows With Large Density Ratios
,”
Int. J. Numer. Methods Fluids
,
86
(
2
), pp.
167
184
.
22.
Swab
,
J. J.
,
Wereszczak
,
A. A.
,
Tice
,
J.
,
Caspe
,
R.
, and
Kraft
,
R. H.
,
2005
, “
Mechanical and Thermal Properties of Advanced Ceramics for gun Barrel Applications
,” Army Research Laboratory, ARL-TR-3417.
23.
ASME Boiler and Pressure Vessel Code: Part D Properties (Metric) Materials, 1989, pp.
1998
2001
.
24.
Rogers
,
B.
,
Schoonover
,
I. C.
, and
Jordan
,
L.
,
1936
,
Silver: Its Properties and Industrial Uses
,
US National Bureau of Standards
, pp.
412
426
.
25.
Schmidt
,
F. F.
,
1963
,
The Engineering Properties of Tungsten and Tungsten Alloys (191)
,
Defense Metals Information Center, Battelle Memorial Institute
.
26.
Kang
,
S.-G.
,
Ryu
,
J. I.
,
Motily
,
A.
,
Numkiatsakul
,
P.
,
Lee
,
T.
,
Kriven
,
W.
,
Kim
,
K.
, and
Kwon
,
C.-B.
, “
Thermo-Mechanical Response of a Hot Surface Ignition Device Under Aircraft Compression Ignition Engine Conditions
,”
Proceedings of AIAA Propulsion and Energy 2021 Forum
, p.
3615
.
27.
Kingery
,
W. D.
,
1955
, “
Factors Affecting Thermal Stress Resistance of Ceramic Materials
,”
J. Am. Ceram. Soc.
,
38
(
1
), pp.
3
15
.
28.
Manson
,
S.
,
1953
,
Behavior of Materials Under Thermal Stress (2933)
,
NACA
.
29.
Becher
,
P.
,
Wu
,
C. C.
, and
MacFarlane
,
B.
, “
Thermal-Shock Behavior in Toughened Al2O3-ZrO2 Composites
,”
Proceedings of American Ceramic Society Bulletin
,
Westerville, OH
, pp.
357
357
.
30.
Ranz
,
W. E.
,
1952
, “
Evaporation From Drops-I and II
,”
Chem. Eng. Prog.
,
48
, pp.
141
146
.
31.
Masuda
,
M.
,
Soma
,
T.
, and
Matsui
,
M.
,
1990
, “
Cyclic Fatigue Behavior of Si3N4 Ceramics
,”
J. Eur. Ceram. Soc.
,
6
(
4
), pp.
253
258
.
32.
Ahamed
,
S.
,
Cho
,
Y.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2022
, “
Development and Application of a Drop-Wall Interaction Model at High Ambient Pressure Conditions
,”
Atomization Sprays
,
32
(
4
), pp.
1
23
.
33.
Pan
,
Y.
,
Yang
,
X.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2020
, “
Development of Drop/Wall Interaction Model for Application in Engine Conditions
,”
Atomization Sprays
,
30
(
3
), pp.
153
170
.
34.
Pan
,
Y.
,
Yang
,
X.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2020
, “
SPH Simulations of Drop Impact on Heated Walls and Determination of Impact Criteria
,”
Atomization Sprays
,
30
(
2
), pp.
131
152
.
35.
Pan
,
Y.
,
Yang
,
X.
,
Kong
,
S.-C.
,
Ting
,
F. C.
,
Iyer
,
C.
, and
Yi
,
J.
,
2022
, “
Characterization of Fuel Drop Impact on Wall Films Using SPH Simulation
,”
Int. J. Engine Res.
,
23
(
3
), pp.
416
433
.
36.
Yang
,
X.
, and
Kong
,
S.-C.
,
2020
, “
Smoothed Particle Hydrodynamics Modeling of Fuel Drop Impact on a Heated Surface at Atmospheric and Elevated Pressures
,”
Phys. Rev. E
,
102
(
3
), pp.
033313
.
37.
Mouritz
,
A. P.
,
2012
,
Introduction to Aerospace Materials
,
Elsevier
,
New York
.
You do not currently have access to this content.