Abstract

To improve the calculation accuracy of motor thermal field, this paper proposes a method for calculating the equivalent thermal conductivity of winding based on conductor distribution, and a 24-slot 26-pole outer-rotor permanent magnet synchronous motor is taken as an example to verify the method. First, the equivalent thermal conductivity of winding is calculated by traditional equivalent methods, namely the equivalent insulation layer method and the area weighting method. Second, the equivalent thermal conductivity of the slot winding and end winding in the three-dimensional (3D) direction is derived using the conductor distribution method. Third, the 3D finite element models corresponding to three equivalent methods are established, and the temperature of the motor under different operating conditions is simulated and compared. Finally, an experimental platform is built to verify the accuracy of the proposed conductor distribution method.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Tong
,
W.
,
Wu
,
S.
, and
Tang
,
R.
,
2018
, “
Totally Enclosed Self-Circulation Axial Ventilation System Design and Thermal Analysis of a 1.65-MW Direct-Drive PMSM
,”
IEEE Trans. Ind. Electron.
,
65
(
12
), pp.
9388
9398
.
2.
Tovar-Barranco
,
A.
,
Lopez-de-Heredia
,
A.
,
Villar
,
I.
, and
Briz
,
F.
,
2021
, “
Modeling of End-Space Convection Heat-Transfer for Internal and External Rotor PMSMs With Fractional-Slot Concentrated Windings
,”
IEEE Trans. Ind. Electron.
,
68
(
3
), pp.
1928
1937
.
3.
Ge
,
L.
,
Burkhart
,
B.
, and
De Doncker
,
R. W.
,
2020
, “
Fast Iron Loss and Thermal Prediction Method for Power Density and Efficiency Improvement in Switched Reluctance Machines
,”
IEEE Trans. Ind. Electron.
,
67
(
6
), pp.
4463
4473
.
4.
Tessarolo
,
A.
, and
Bruzzese
,
C.
,
2015
, “
Computationally Efficient Thermal Analysis of a Low-Speed High-Thrust Linear Electric Actuator With a Three-Dimensional Thermal Network Approach
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1410
1420
.
5.
Hao
,
X.
,
Peng
,
B.
,
Chen
,
Y.
, and
Xie
,
G.
,
2015
, “
Transient Thermal Model of a Permanent Magnet Synchronous Planar Motor Considering Spreading Thermal Resistance
,”
Appl. Therm. Eng.
,
81
, pp.
1
9
.
6.
Pei
,
Z.
,
Zhao
,
J.
,
Song
,
J.
,
Zong
,
K.
,
He
,
Z.
, and
Zhou
,
Y.
,
2021
, “
Temperature Field Calculation and Water-Cooling Structure Design of Coreless Permanent Magnet Synchronous Linear Motor
,”
IEEE Trans. Ind. Electron.
,
68
(
2
), pp.
1065
1076
.
7.
Chang
,
J.
, and
Wang
,
C.
,
2021
, “
Electromagnetic Thermal Coupling Analysis for a Novel Cooling System of an Axial Flux hub Motor
,”
IET Electr. Power Appl.
,
16
(
4
), pp.
421
433
.
8.
Lu
,
Q.
,
Zhang
,
X.
,
Chen
,
Y.
,
Huang
,
X.
,
Ye
,
Y.
, and
Zhu
,
Z. Q.
,
2015
, “
Modeling and Investigation of Thermal Characteristics of a Water-Cooled Permanent-Magnet Linear Motor
,”
IEEE Trans. Ind. Appl.
,
51
(
3
), pp.
2086
2096
.
9.
Wang
,
X.
,
Li
,
B.
,
Gerada
,
D.
,
Huang
,
K.
,
Stone
,
I.
,
Worrall
,
S.
, and
Yan
,
Y.
,
2022
, “
A Critical Review on Thermal Management Technologies for Motors in Electric Cars
,”
Appl. Therm. Eng.
,
201
(
Pt A
), p.
117758
.
10.
Bi
,
Y.
,
Chai
,
F.
,
Chen
,
L.
,
2021
, “
The Study of Cooling Enhancement in Axial Flux Permanent Magnet Motors for Electric Vehicles
,”
IEEE Trans. Ind. Appl.
,
57
(
5
), pp.
4831
4839
.
11.
Boglietti
,
A.
,
Carpaneto
,
E.
,
Cossale
,
M.
,
Vaschetto
,
S.
,
Popescu
,
M.
, and
Staton
,
D. A.
,
2016
, “
Stator Winding Thermal Conductivity Evaluation: An Industrial Production Assessment
,”
IEEE Trans. Ind. Appl.
,
52
(
5
), pp.
3893
3900
.
12.
Huang
,
X.
,
Liu
,
J.
,
Zhang
,
C.
, and
Li
,
L.
,
2013
, “
Calculation and Experimental Study on Temperature Rise of a High OverLoad Tubular Permanent Magnet Linear Motor
,”
IEEE Trans. Plasma Sci.
,
41
(
5
), pp.
1182
1187
.
13.
Vansompel
,
H.
,
Yarantseva
,
A.
,
Sergeant
,
P.
, and
Crevecoeur
,
G.
,
2019
, “
An Inverse Thermal Modeling Approach for Thermal Parameter and Loss Identification in an Axial Flux Permanent Magnet Machine
,”
IEEE Trans. Ind. Electron.
,
66
(
3
), pp.
1727
1735
.
14.
Zhang
,
X.
,
Dong
,
T.
, and
Zhou
,
F.
,
2019
, “
Equivalent Thermal Conductivity Estimation for Compact Electromagnetic Windings
,”
IEEE Trans. Ind. Electron.
,
66
(
8
), pp.
6210
6219
.
15.
Yi
,
X.
,
Yang
,
T.
,
Xiao
,
J.
,
Miljkovic
,
N.
,
King
,
W. P.
, and
Haran
,
K. S.
,
2021
, “
Equivalent Thermal Conductivity Prediction of Form-Wound Windings With Litz Wire Including Transposition Effects
,”
IEEE Trans. Ind. Appl.
,
57
(
2
), pp.
1440
1449
.
16.
Idoughi
,
L.
,
Mininger
,
X.
,
Bouillault
,
F.
,
Bernard
,
L.
, and
Hoang
,
E.
,
2011
, “
Thermal Model With Winding Homogenization and FIT Discretization for Stator Slot
,”
IEEE Trans. Magn.
,
47
(
12
), pp.
4822
4826
.
17.
Salinas López
,
G.
,
Expósito
,
A. D.
,
Muñoz-Antón
,
J.
,
Ramírez
,
JÁO
, and
López
,
R. P.
,
2020
, “
Fast and Accurate Thermal Modeling of Magnetic Components by FEA-Based Homogenization
,”
IEEE Trans. Power Electron.
,
35
(
2
), pp.
1830
1844
.
18.
Liu
,
X.
,
Gerada
,
D.
,
Xu
,
Z.
,
Corfield
,
M.
,
Gerada
,
C.
, and
Yu
,
H.
,
2020
, “
Effective Thermal Conductivity Calculation and Measurement of Litz Wire Based on the Porous Metal Materials Structure
,”
IEEE Trans. Ind. Electron.
,
67
(
4
), pp.
2667
2677
.
You do not currently have access to this content.