In applications involving substantial friction, surface failure is an inevitable phenomenon. Friction induced failure typically involves the generation of considerable heat. Existence of significant frictional force leads to relatively high interface temperature as a result of dynamic nature of flash temperatures at the contact areas. A first step in predicting friction induced failure is to develop an accurate thermomechanical model of the friction system. A thermomechanical model is developed in this paper based on a lumped parameter representation of a two-disk brake. A disk is viewed as consisting of three main regions: (1) the surface contact, (2) the friction interface, and (3) the bulk. The lumped parameter model is obtained by dividing a disk into a number of concentric rings and stacked layers. The friction layer contains both the interface and contact elements, each includes the equivalent thermal capacitance and conductive resistance. The contact capacitance and resistance are described in terms of the elastic contact interaction between the surfaces of the two disks. Therefore, they are obtained using the Greenwood and Williamson model for contact of rough surfaces. Each is described as a statistical summation of the micron-scale interaction of the surfaces.

1.
Blok
,
H.
, 1937, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions
,”
Proceedings of the General Discussion on Lubrication and Lubricants
,
Institute for Mechanical Engineers
,
London
, Vol.
2
, pp.
222
235
.
2.
Jaeger
,
J. C. J.
, 1942, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
0035-9173,
76
, pp.
203
224
.
3.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
,
Oxford University
,
London
.
4.
Barber
,
J. R.
, 1971, “
The Solution of Heated Punch Problems by Point Source Methods
,”
Int. J. Eng. Sci.
0020-7225,
9
, pp.
1165
1170
.
5.
Barber
,
J. R.
, 1980, “
The Transient Thermo-Elastic Contact of a Sphere Sliding on a Plane
,”
Wear
0043-1648,
59
, pp.
21
29
.
6.
Barber
,
J. R.
, 1972, “
Distortion of the Semi-Infinite Solid Due to Transient Surface Heating
,”
Int. J. Mech. Sci.
0020-7403,
14
, pp.
377
393
.
7.
Barber
,
J. R.
, 1973, “
Indentation of a Semi-Infinite Solid by a Hot Sphere
,”
Int. J. Mech. Sci.
0020-7403,
15
(
10
), pp.
813
819
.
8.
Tian
,
X.
, and
Kennedy
,
F. E.
, 1993, “
Contact Surface Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding
,”
ASME J. Tribol.
0742-4787,
115
, pp.
411
418
.
9.
Chantrenne
,
P.
, and
Raynaud
,
M.
, 1997, “
A Microscopic Thermal Model for Dry Sliding Contact
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
5
), pp.
1083
1094
.
10.
Wang
,
Q.
, and
Liu
,
G.
, 1999, “
A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer
,”
STLE Tribol. Trans.
1040-2004,
42
(
4
), pp.
763
770
.
11.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
, 2001, “
A Three-Dimensional Thermo Mechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
Tribol. Trans.
1040-2004,
123
, pp.
17
26
.
12.
Liu
,
S.
,
Lannou
,
S.
,
Wang
,
Q.
, and
Keer
,
L.
, 2004, “
Solutions for Temperature Rise in Stationary/Moving Bodies Caused by Surface Heating With Surface Convection
,”
ASME J. Tribol.
0742-4787,
126
, pp.
776
785
.
13.
Lin
,
J. F.
,
Chung
,
J. C.
,
Chen
,
J. W.
, and
Liu
,
T. C.
, 2005, “
Thermal Analysis of the Transient Temperatures Arising at the Contact Spots of Two Sliding Surfaces
,”
ASME J. Tribol.
0742-4787,
127
, pp.
694
704
.
14.
Archard
,
J. F.
, 1959, “
The Temperature of Rubbing Surfaces
,”
Wear
0043-1648,
2
, pp.
438
455
.
15.
Gao
,
J. Q.
,
Lee
,
S. C.
, and
Ai
,
X. L.
, 2000, “
An FFT-Based Transient Flash Temperature Model for General Three-Dimensional Rough Surface Contacts
,”
ASME J. Tribol.
0742-4787,
122
, pp.
519
523
.
16.
McCool
,
J. I.
, and
John
,
J.
, 1988, “
Flash Temperature on the Asperity Scale and Scuffing
,”
ASME J. Tribol.
0742-4787,
110
(
4
), pp.
659
663
.
17.
Hertz
,
H.
, 1882, “
Uber die Beruhrung fester elastische Korper
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
.
18.
Tabor
,
D.
, 1951,
The Hardness of Metals
,
Oxford University
,
London
.
19.
Timoshenko
,
S.
, and
Goodier
,
J. N.
, 1951,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
20.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
0950-1207,
295
, pp.
300
319
.
21.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1970, “
Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech, Eng.
,
185
, pp.
625
634
.
22.
Barber
,
J. R.
, 1978, “
Contact Problems Involving a Cooled Punch
,”
J. Elast.
0374-3535,
8
(
4
), pp.
409
423
.
23.
Barber
,
J. R.
, 1982, “
Indentation of an Elastic Half-Space by a Cooled Flat Punch
,”
Q. J. Mech. Appl. Math.
0033-5614,
35
(
1
), pp.
141
154
.
24.
Johnson
,
K. L.
, 1987,
Contact Mechanics
,
Cambridge University
,
Cambridge
.
25.
Merriman
,
T.
, and
Kannel
,
J.
, 1989, “
Analyses of the Role of Surface Roughness on Contact Stresses Between Elastic Cylinders With and Without Soft Surface Coating
,”
ASME J. Tribol.
0742-4787,
111
, pp.
87
94
.
26.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
, 1991, “
A Fast Solution of the Dry Contact Problem and the Associated Subsurface Stress-Field Using Multilevel Techniques
,”
ASME J. Tribol.
0742-4787,
113
, pp.
128
133
.
27.
Barber
,
J. R.
, 1992,
Elasticity
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
28.
Goryacheva
,
I.
,
Sadeghi
,
F.
, and
Nickel
,
D. A.
, 1996, “
Internal Stresses in Contact of a Rough Body and Viscoelastic Layered Semi-Infinite Plane
,”
ASME J. Tribol.
0742-4787,
118
, pp.
131
136
.
29.
Sayles
,
R. S.
, 1996, “
Basic Principles of Rough Surface Contact Analysis Using Numerical Methods
,”
Tribol. Int.
0301-679X,
29
, pp.
639
650
.
30.
Lee
,
S. C.
, and
Ren
,
N.
, 1996, “
Behavior of Elastic-Plastic Rough Surface Contact as Affected by Surface Topography, Load, and Material Hardness
,”
STLE Tribol. Trans.
1040-2004,
39
, pp.
67
74
.
31.
Kral
,
E. R.
, and
Komvopoulos
,
K.
, 1997, “
Three-Dimensional Finite Element Analysis of Subsurface Stress and Strain Fields Due to Sliding Contact on an Elastic-Plastic Layered Medium
,”
ASME J. Tribol.
0742-4787,
119
, pp.
332
341
.
32.
Goryacheva
,
I. G.
, 1998,
Contact Mechanics in Tribology
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
You do not currently have access to this content.