A methodology has been developed for coupling the one-dimensional (1D) solution of flow inside the nonpermeable channels with the 3D outer flow in shell and tube type of configurations. In the proposed reacting channel, the 1D channels have detailed reactions while the outer 3D flow can be reactive or nonreactive. The channels are discretized into 1D grid points and a parabolic solver is used to solve the species transport and energy equations inside the channels. Since the walls of the channels are nonpermeable, the two zones are coupled only through the heat transfer. The current approach is tested and validated for a series of problems with increasing complexities. The predictions of the channel model (CM) are compared with 3D modeling of the channels and experimental data. The CM predictions are in excellent agreement with the fully resolved (FR) model with much less computational cost. The discussed methodology is useful for applications such as fuel reformers, hydrocarbon cracking furnaces, heat exchangers, etc.

References

1.
Sundaram
,
K. M.
, and
Froment
,
G. F.
,
1977
, “
Modeling of Thermal Cracking Kinetics. 1. Thermal Cracking of Ethane, Propane and Their Mixtures
,”
Chem. Eng. Sci.
,
32
(
6
), pp.
601
608
.
2.
Lee
,
S.
,
Bae
,
J.
,
Lim
,
S.
, and
Park
,
J.
,
2008
, “
Improved Configuration of Supported Nickel Catalysts in a Steam Reformer for Effective Hydrogen Production From Methane
,”
J. Power Sources
,
180
(
1
), pp.
506
515
.
3.
Kattkea
,
K. J.
,
Brauna
,
R. J.
,
Colclasurea
,
A. M.
, and
Goldin
,
G.
,
2011
, “
High-Fidelity Stack and System Modeling for Tubular Solid Oxide Fuel Cell System Design and Thermal Management
,”
J. Power Sources
,
196
(
8
), pp.
3790
3802
.
4.
Lindström
,
B.
,
Karlsson
,
J. A. J.
,
Ekdunge
,
P.
,
De Verdier
,
L.
,
Häggendal
,
B.
,
Dawody
,
J.
,
Nilsson
,
M.
, and
Petterssonc
,
L. J.
,
2009
, “
Diesel Fuel Reformer for Automotive Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
34
(
8
), pp.
3367
3381
.
5.
Goldin
,
G.
,
Zhu
,
H.
,
Kattke
,
K.
,
Dean
,
A. M.
,
Braun
,
R.
,
Kee
,
R. J.
,
Zhang
,
D.
,
Maier
,
L.
, and
Deutchmann
,
O.
,
2009
, “
Coupling Complex Reformer Chemical Kinetics With Three-Dimensional Computational Fluid Dynamics
,”
ECS Trans.
,
25
(
2
), pp.
1253
1262
.
6.
Stefanidis
,
G. D.
,
Merci
,
B.
,
Heynderickx
,
G. J.
, and
Marin
,
G. B.
,
2006
, “
CFD Simulations of Steam Cracking Furnaces Using Detailed Combustion Mechanisms
,”
Comput. Chem. Eng.
,
30
(
4
), pp.
635
649
.
7.
Detemmerman
,
T.
, and
Froment
,
F.
,
1998
, “
Three Dimensional Coupled Simulation of Furnaces and Reactor Tubes for the Thermal Cracking of Hydrocarbons
,”
Rev. Inst. Fr. Pet.
,
53
(
2
), pp.
182
194
.
8.
Grcar
,
J. F.
,
Kee
,
R. J.
,
Smooke
,
M. D.
, and
Miller
,
J. A.
,
1988
, “
A Hybrid Newton/Time-Integration Procedure for the Solution of Steady, Laminar, One-Dimensional, Premixed Flames
,”
Proc. Combust. Inst.
,
21
(
1
), pp.
1773
1782
.
9.
Incropera
,
F.
,
DeWitt
,
D.
,
Bergman
,
T.
, and
Lavine
,
F.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
10.
ANSYS Fluent 14.5 User Guide
, “
ANSYS Inc.
,” www.ansys.com
11.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(1–2), pp.
31
43
.
You do not currently have access to this content.