An approximate analysis for the pressure field and dynamic force coefficients in turbulent flow, centered hydrostatic journal bearings (HJBs) with fluid inertia and liquid compressibility effects is presented. Results from the analysis show that HJBs with end seals have increased damping, better dynamic stability characteristics, as well as lower flow rates, than conventional HJBs. However, hydrostatic (direct) stiffness may be lost if excessively tight end seals are used. End seals are shown to compensate for the effect of liquid compressibility within the recess volume, and prescribe a net reduction in the whirl frequency ratio for hybrid operation. Hydrostatic squeeze film dampers (HSFD) with end seals are shown to be a viable alternative in applications where a tight control of the bearing leakage is important such as in jet-engines. Furthermore, HSFDs with end seals could be used as an active device to control the available damping in a typical application.

This content is only available via PDF.
You do not currently have access to this content.