Computing the thermoelastic stress field of a material subjected to frictional heating is essential for component failure prevention and life prediction. However, the analysis for three-dimensional thermoelastic stress field for tribological problems is not well developed. Furthermore, the pressure distribution due to rough surface contact is irregular; hence the frictional heating can hardly be described by an analytical expression. This paper presents a novel set of frequency-domain expressions (frequency response functions) of the thermoelastic stress field of a uniformly moving three-dimensional elastic half-space subjected to arbitrary transient frictional heating, where the velocity of the half-space, its magnitude and direction, can be an arbitrary function of time. General formulas are expressed in the form of time integrals, and important expressions for constant velocities are given for the transient-instantaneous, transient-continuous, and steady-state cases. The thermoelastic stress field inside a translating half-space with constant velocities are illustrated and discussed by using the discrete convolution and fast Fourier transform method when a parabolic type or an irregularly distributed heat source is applied.

1.
Kennedy
,
F. E.
,
1984
, “
Thermal and Thermomechanical Effects in Dry Sliding
,”
Wear
,
100
, pp.
453
476
.
2.
Mow
,
V. C.
, and
Cheng
,
H. S.
,
1967
, “
Thermal Stresses in an Elastic Half-Space Associated with an Arbitrary Distributed Moving Heat Source
,”
Journal of Applied Mathematics and Physics (ZAMP)
,
18
, pp.
500
507
.
3.
Ju
,
F. D.
, and
Chen
,
T. Y.
,
1984
, “
Thermomechanical Cracking in Layered Media from Moving Friction Load
,”
ASME J. Tribol.
,
106
, pp.
513
518
.
4.
Ju
,
F. D.
, and
Liu
,
J. C.
,
1988
, “
Effect of Peclet Number in Thermo-Mechanical Cracking Due to High-Speed Friction Load
,”
ASME J. Tribol.
,
110
, pp.
217
221
.
5.
Ju
,
F. D.
, and
Liu
,
J. C.
,
1988
, “
Parameters Affecting Thermo-Mechanical Cracking in Coated Media Due to High-Speed Friction Load
,”
ASME J. Tribol.
,
110
, pp.
222
227
.
6.
Bryant
,
M.
,
1988
, “
Thermoelastic Solutions for Thermal Distributions Moving Over Half Space Surfaces and Application to the Moving Heat Source
,”
ASME J. Appl. Mech.
,
55
, pp.
87
92
.
7.
Leroy
,
J. M.
,
Floquet
,
A.
, and
Villechaise
,
B.
,
1989
, “
Thermomechanical Behavior of Multilayered Media: Theory
,”
ASME J. Tribol.
,
112
, pp.
317
323
.
8.
Leroy
,
J. M.
,
Floquet
,
A.
, and
Villechaise
,
B.
,
1990
, “
Thermomechanical Behavior of Multilayered Media: Results
,”
ASME J. Tribol.
,
111
, pp.
538
544
.
9.
Ju
,
Y.
, and
Farris
,
T. N.
,
1997
, “
FFT Thermoelastic Solution for Moving Heat Sources
,”
ASME J. Tribol.
,
119
, pp.
156
162
.
10.
Liu
,
G.
, and
Wang
,
Q.
,
2000
, “
Thermoelastic Asperity Contacts, Frictional Shear, and Parameter Correlations
,”
ASME J. Tribol.
,
122
, pp.
300
307
.
11.
Sharma
,
B.
,
1958
, “
Thermal Stresses in Transversely Isotropic Semi-Infinite Elastic Solids
,”
ASME J. Appl. Mech.
,
25
, pp.
86
88
.
12.
Ting
,
B. Y.
, and
Winer
,
W. O.
,
1989
, “
Frictional-Induced Thermal Influences in Elastic Contact Between Spherical Asperities
,”
ASME J. Tribol.
,
111
, pp.
315
322
.
13.
Huang
,
J. H.
, and
Ju
,
F. D.
,
1985
, “
Thermomechanical Cracking Due to Moving Frictional Loads
,”
Wear
,
102
, pp.
81
104
.
14.
Shi
,
Z.
, and
Ramalingam
,
S.
,
2001
, “
Thermal and Mechanical Stresses in Transversely Isotropic Coatings
,”
Surf. Coat. Technol.
,
138
, pp.
173
184
.
15.
Sumi
,
N.
,
Hetnarski
,
R. B.
, and
Noda
,
N.
,
1987
, “
Transient Thermal-Stresses Due To a Local Source of Heat Moving Over The Surface of an Infinite Elastic Slab
,”
J. Therm. Stresses
,
10
(
1
), pp.
83
96
.
16.
Sumi
,
N.
, and
Hetnarski
,
R. B.
,
1989
, “
Transient Thermal-Stresses Due to a Zonal Heat-Source Moving Back and Forth Over the Surface on an Infinite-Plate
,”
Nucl. Eng. Des.
,
117
(
2
), pp.
159
167
.
17.
Tsuji
,
M.
,
Nishitani
,
T.
, and
Shimizu
,
M.
,
1996
, “
Technical Note: Three-Dimensional Coupled Thermal Stresses in Infinite Plate Subjected to a Moving Heat Source
,”
J. Strain Anal.
,
31
(
3
), pp.
243
247
.
18.
Barber
,
J. R.
,
1972
, “
Distortion of the Semi-infinite Solid Due to Transient Surface Heating
,”
Int. J. Mech. Sci.
,
14
, pp.
377
393
.
19.
Liu
,
S. B.
,
Rodgers
,
M.
,
Wang
,
Q.
, and
Keer
,
L.
,
2001
, “
A Fast and Effective Method For Transient Thermoelastic Displacement Analyses
,”
ASME J. Tribol.
,
123
, pp.
479
485
.
20.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
110
.
21.
Liu
,
S. B.
, and
Wang
,
Q.
,
2002
, “
Studying Contact Stress Fields Caused by Surface Tractions with a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
, pp.
36
45
.
22.
Liu, S. B., Rodgers, M., Wang, Q., Keer, L., and Cheng, H. S., 2002, “Temperature Distributions and Thermoelastic Displacements in Moving Bodies,” Computer Modeling in Engineering & Sciences, 3(4), pp. 465–482.
23.
Liu, S. B., Wang, Q., and Harris, S. J., 2002, “Surface Normal Thermoelastic Displacement in Moving Rough Bodies,” submitted to ASME J. Tribol.
24.
Seo
,
K.
, and
Mura
,
T.
,
1979
, “
The Elastic Field in a Half Space Due to Ellipsoidal Inclusions with Uniform Dilatational Eigenstrains
,”
ASME J. Appl. Mech.
,
46
, pp.
568
572
.
25.
Liu, S. B., 2001, “Thermomechanical Contact Analyses of Rough Bodies,” Ph.D. dissertation, Northwestern University, Evanston, IL.
26.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact-Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
, pp.
493
500
.
27.
Liu
,
S. B.
, and
Wang
,
Q.
,
2001
, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
ASME J. Tribol.
,
123
, pp.
17
26
.
You do not currently have access to this content.