An elastic-plastic finite element analysis of a sphere in normal and sliding contact with a layered medium possessing a patterned surface with regularly spaced rectangular pads was conducted in order to investigate the effect of pattern geometry on the contact pressure distribution and subsurface stress-strain field. Three-dimensional sliding simulations were performed for lateral displacement of the indenting sphere approximately equal to two times the pad spatial periodicity. Three complete loading cycles, involving indentation, sliding, and unloading of a rigid sphere, were simulated to assess the effect of repeated sliding on the stresses in the first (hard) layer and plastic deformation in the underlying (soft) layer. Thermomechanical sliding contact simulations of an elastic-plastic layered medium with a patterned surface and an elastic-plastic sphere with properties identical to those of the first layer were carried out to examine the effect of frictional heating on the deformation behavior of the medium. Results are presented for the temperature distribution and maximum temperature variation at the surface and the evolution of subsurface plasticity in terms of Peclet number. The likelihood of thermal cracking in the wake of microcontacts during sliding is interpreted in the context of the thermal tensile stress due to the temperature gradients in the layered medium.
Skip Nav Destination
Article navigation
January 2004
Technical Papers
Mechanical and Thermomechanical Elastic-Plastic Contact Analysis of Layered Media With Patterned Surfaces
Z.-Q. Gong, Graduate Student,
Z.-Q. Gong, Graduate Student
Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Search for other works by this author on:
K. Komvopoulos, Professor, Fellow ASME
K. Komvopoulos, Professor, Fellow ASME
Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Search for other works by this author on:
Z.-Q. Gong, Graduate Student
Department of Mechanical Engineering, University of California, Berkeley, CA 94720
K. Komvopoulos, Professor, Fellow ASME
Department of Mechanical Engineering, University of California, Berkeley, CA 94720
Contributed by the Tribology Division of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS for presentation at the STLE/ASME Joint International Tribology Conference, Ponte Vedra, FL, October 26–29, 2003. Manuscript received by the Tribology Division December 18, 2002; revised manuscript received June 10, 2003. Associate Editor: G. G. Adams.
J. Tribol. Jan 2004, 126(1): 9-17 (9 pages)
Published Online: January 13, 2004
Article history
Received:
December 18, 2002
Revised:
June 10, 2003
Online:
January 13, 2004
Citation
Gong, Z., and Komvopoulos, K. (January 13, 2004). "Mechanical and Thermomechanical Elastic-Plastic Contact Analysis of Layered Media With Patterned Surfaces ." ASME. J. Tribol. January 2004; 126(1): 9–17. https://doi.org/10.1115/1.1609487
Download citation file:
Get Email Alerts
Factor Analysis-Based Selection of Xanthoceras sorbifolia Bunge Oil as a Promising Bio-Based Lubricant
J. Tribol (February 2025)
A Review on Mechanical and Wear Characteristics of Magnesium Metal Matrix Composites
J. Tribol (February 2025)
Related Articles
Indentation Analysis of Elastic-Plastic Homogeneous and Layered Media: Criteria for Determining the Real Material Hardness
J. Tribol (October,2003)
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
J. Tribol (April,2005)
A Finite Element Model for Spherical Debris Denting in Heavily Loaded Contacts
J. Tribol (January,2004)
Spatially Resolved Characterization of Geometrically Necessary Dislocation Dependent Deformation in Microscale Laser Shock Peening
J. Manuf. Sci. Eng (August,2009)
Related Chapters
Understanding the Problem
Design and Application of the Worm Gear
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design