Abstract

A semi-analytical thermo-elastic-plastic contact model has been recently developed and presented in a companion paper. The main advantage of this approach over the classical finite element method (FEM) is the treatment of transient problems with the use of fine meshing and the possibility of studying the effect of a surface defect on the surface deflection as well as on subsurface stress state. A return-mapping algorithm with an elastic predictor/plastic corrector scheme and a von Mises criterion is now used, which improves the plasticity loop. This improvement in the numerical algorithm increases the computing speed significantly and shows a much better convergence and accuracy. The contact model is validated through a comparison with the FEM results of Kogut and Etsion (2002, J. Appl. Mech., 69, pp. 657–662) which correspond to the axisymmetric contact between an elastic-perfectly plastic sphere and a rigid flat. A model for wear prediction based on the material removal during cyclic loading is then proposed. Results are presented, first, for initially smooth surfaces and, second, for rough surfaces. The effects of surface shear stress and hardening law are underlined.

1.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
, 2002, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
0742-4787,
124
, pp.
653
667
.
2.
Antaluca
,
E.
,
Nélias
,
D.
, and
Cretu
,
S.
, 2004, “
A Three-Dimensional Friction Model For Elastic-Plastic Contact With Tangential Loading—Application to Dented Surfaces
,”
Proceedings of 2004 ASME/STLE International Joint Tribology Conference
,
ASME
,
New York
, Paper No. TRIB2004-64331.
3.
Boucly
,
V.
,
Nélias
,
D.
,
Liu
,
S.
,
Wang
,
Q. J.
, and
Keer
,
L. M.
, 2005, “
Contact Analyses for Bodies With Frictional Heating and Plastic Behavior
,”
ASME J. Tribol.
0742-4787,
127
, pp.
355
364
.
4.
Miller
,
G. R.
,
Keer
,
L. M.
, and
Cheng
,
H. S.
, 1985, “
On the Mechanics of Fatigue Crack Growth Due to Contact Loading
,”
Proc. R. Soc. London, Ser. A
1364-5021,
397
, pp.
197
209
.
5.
Oila
,
A.
,
Shaw
,
B. A.
,
Aylott
,
C. J.
, and
Bull
,
S. J.
, 2005, “
Matensite Decay in Micropitted Gears
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
219
, pp.
77
83
.
6.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
7.
Liu
,
G.
,
Wang
,
Q. J.
, and
Lin
,
C.
, 1999, “
A Survey of Current Models for Simulating the Contact between Rough Surfaces
,”
Tribol. Trans.
1040-2004,
42
, pp.
581
591
.
8.
Jackson
,
R.
,
Chusoipin
,
I.
, and
Green
,
I.
, 2005, “
A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts
,”
ASME J. Tribol.
0742-4787,
127
, pp.
484
493
.
9.
Liu
,
S.
, and
Wang
,
Q. J.
, 2001, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
123
, pp.
17
26
.
10.
Gallego
,
L.
,
Nélias
,
D.
, and
Jacq
,
C.
, 2005, “
A Comprehensive Elastic-Plastic Model to Predict Wear and to Define the Optimum Geometry of Fretting Surfaces
,”
Proceedings of 2005 World Tribology Congress III
, ASME, New York, Paper No. WTC2005-63451.
11.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
0742-4787,
125
, pp.
499
506
.
12.
Sainsot
,
P.
,
Jacq
,
C.
, and
Nélias
,
D.
, 2002, “
A Numerical Model for Elastoplastic Rough Contact
,”
Comput. Model. Eng. Sci.
1526-1492,
3
, pp.
497
506
.
13.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
14.
Liu
,
G.
, and
Wang
,
Q. J.
, 2003, “
Transient Thermoelastic Stress Field in a Half-Space
,”
ASME J. Tribol.
0742-4787,
125
, pp.
33
43
.
15.
Fotiu
,
P. A.
, and
Nemat-Nasser
,
S.
, 1996, “
A Universal Integration Algorithm for Rate-Dependant Elastoplasticity
,”
Comput. Struct.
0045-7949,
59
, pp.
1173
1184
.
16.
Ludwik
,
P.
, 1927, “
Die Bedeutung des Gleit- und Reißwiderstandes für die Werkstoffprüfung
,”
Z. des Verein. deutscher Ingenieure
,
71
, pp.
1532
1538
.
17.
Polakowski
,
N. H.
, and
Ripling
,
E. J.
, 1966,
Strength and Structure of Engineering Materials
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.