As the size of contacting and sliding tribosystems decrease, intermolecular or adhesive forces become significant partly due to nanometer size surface roughness. The presence of adhesion has a major influence on the interfacial contact and friction forces as well as the microtribosystem dynamics (microtribodynamics) and thus influences the overall dynamic friction behavior. In this paper, a dynamic friction model that explicitly includes adhesion, interfacial damping, and the system dynamics for realistic rough surfaces was developed. The results show that the amplitude and mean value of the time varying normal contact and friction forces increase in the presence of adhesion under continuous contact conditions. Also, due to the attractive nature of adhesion, its presence delays or eliminates the occurrence of loss of contact. Furthermore, in the presence of significant adhesion, dynamic friction behavior is significantly more complicated compared to the no adhesion case, and the dynamic friction coefficient predictions may be misleading. Thus, it is more appropriate to discuss dynamic friction force instead of dynamic friction coefficient under dynamic conditions.

1.
Pollock
,
H. M.
, 1992, “
Surface Forces and Adhesion
,”
Fundamentals of Friction: Microscopic and Microscopic Processes
,
I.
Singer
and
H.
Pollock
, eds.,
Kluwer Academic
, Dordrecht pp.
77
94
.
2.
Johnson
,
K. L.
, 1998, “
Mechanics of Adhesion
,”
Tribol. Int.
0301-679X,
31
, pp.
413
418
.
3.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
324
, pp.
301
313
.
4.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
, 1975, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
0021-9797,
53
, pp.
314
326
.
5.
Tabor
,
D.
, 1977, “
Surface Forces and Surface Interactions
,”
J. Colloid Interface Sci.
0021-9797,
58
, pp.
2
13
.
6.
Maugis
,
D.
, 1992, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
0021-9797,
150
, pp.
243
269
.
7.
Dugdale
,
D. S.
, 1960, “
Yielding in Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
8.
Greenwood
,
J. A.
, and
Johnson
,
K. L.
, 1998, “
An Alternative to the Maugis Model of Adhesion Between Elastic Spheres
,”
J. Phys. D
0022-3727,
31
, pp.
3279
3290
.
9.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
10.
McCool
,
J. I.
, 1986, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
0043-1648,
107
, pp.
37
60
.
11.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
109
, pp.
257
263
.
12.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Adhesion Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
, pp.
50
56
.
13.
Muller
,
V. M.
,
Derjaguin
,
B. V.
, and
Toporov
,
Y. P.
, 1983, “
On Two Methods of Calculation of the Force of Sticking of an Elastic Sphere to a Rigid Plane
,”
Colloids Surf.
0166-6622,
7
, pp.
251
259
.
14.
Kogut
,
L.
, and
Etsion
,
I.
, 2004, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
126
, pp.
34
40
.
15.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
Adhesion in Elastic-Plastic Spherical Microcontact
,”
J. Colloid Interface Sci.
0021-9797,
261
, pp.
372
378
.
16.
Adams
,
G. G.
,
Muftu
,
S.
, and
Azhar
,
N. M.
, 2003, “
A Scale-Dependent Model for Multi-Asperity Contact and Friction
,”
ASME J. Tribol.
0742-4787,
125
, pp.
700
708
.
17.
Adams
,
G. G.
, and
Muftu
,
S.
, 2005, “
Improvements to a Scale-Dependent Model for Contact and Friction
,”
J. Phys. D
0022-3727,
38
, pp.
1402
1409
.
18.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
, pp.
57
63
.
19.
Hurtado
,
J. A.
, and
Kim
,
K.-S.
, 1999, “
Scale Effects in Friction of Single Asperity Contact: Part I: From Concurrent Slip to Single-Dislocation-Assisted Slip
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
3363
3384
.
20.
Hurtado
,
J. A.
, and
Kim
,
K.-S.
, 1999, “
Scale Effects in Friction of Single Asperity Contact: Part II: Multiple-Dislocation-Cooperated Slip
,”
Proc. R. Soc. London, Ser. A
1364-5021,
455
, pp.
3385
3400
.
21.
Shi
,
X.
, and
Polycarpou
,
A. A.
, 2003, “
A Dynamic Friction Model for Unlubricated Rough Planar Surfaces
,”
ASME J. Tribol.
0742-4787,
125
, pp.
788
796
.
22.
Hess
,
D. P.
, and
Soom
,
A.
, 1993, “
The Effects of Relative Angular Motions on Friction at Rough Planar Contacts
,”
ASME J. Tribol.
0742-4787,
115
, pp.
96
101
.
23.
Polycarpou
,
A. A.
, and
Etsion
, 1999, “
Analytical Approximations in Modeling Contacting Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
121
, pp.
234
239
.
24.
Pergande
,
S. R.
,
Polycarpou
,
A. A.
, and
Conry
,
T. F.
, 2004, “
Nanomechanical Properties of Aluminum 390-T6 Rough Surfaces Undergoing Tribological Testing
,”
ASME J. Tribol.
0742-4787,
126
, pp.
573
582
.
25.
Shi
,
X.
, and
Polycarpou
,
A. A.
, 2005, “
Modeling and Measurement of Contact Stiffness and Contact Damping at Meso Scales
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
52
60
.
26.
Etsion
,
I.
, and
Amit
,
M.
, 1993, “
Effect of Small Normal Loads on the Static Friction Coefficient for Very Smooth Surfaces
,”
ASME J. Tribol.
0742-4787,
115
, pp.
406
410
.
27.
Godfrey
,
D.
, 1967, “
Vibration Reduces Metal to Metal Contact and Causes an Apparent Reduction in Friction
,”
ASLE Trans.
0569-8197,
10
, pp.
183
192
.
28.
Soom
,
A.
, and
Kim
,
C.
, 1983, “
Roughness-Induced Dynamic Loading at Dry and Boundary-Lubricated Sliding Contacts
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
514
517
.
29.
Kupchenko
,
S. S.
, and
Hess
,
D. P.
, 2000, “
Mechanical Contact Frequency Response Measurements
,”
ASME J. Tribol.
0742-4787,
122
, pp.
828
833
.
30.
Soom
,
A.
, and
Kim
,
C.
, 1983, “
Interactions Between Dynamic Normal and Frictional Forces During Unlubricated Sliding
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
221
229
.
You do not currently have access to this content.