In view of the difficulty in measurement of flash temperature rise at the contact between rough sliding bodies a good deal of work has been carried out in the last few decades to predict flash temperatures theoretically. However, as surfaces become smoother and loading decreases in applications such as MEMS, NEMS and magnetic storage devices measurement of flash temperature becomes increasingly more difficult due to the nanometer scale asperity interactions. Consequently measurement of flash temperature at the nanoscale asperity contact has not yet been possible. The analysis of flash temperature rise under these circumstances is no less challenging since it must consider not only the small-scale asperity height distributions but also the surface forces those may operate at very small surface separations. The paper attempts to predict the flash temperature rise analytically using a fractal approach to describe the nanoscale asperity interactions at low loads and also taking into account the influence of relevant parameters including the surface forces. The important observation here is that in addition to the dependence on load, speed, and material parameters the flash temperature steadily rises with surface adhesion but falls with the fractal dimension D until a critical value of around 1.5, and then rises again. The flash temperature also falls with Fourier number. Under certain combinations of load, speed, and material parameters, extremely high flash temperature is predicted while under certain other parametric combinations extremely low flash temperature may occur. The later parametric combination is certainly of much practical importance.

1.
Block
,
H.
, 1937, “
General Discussion on Lubrication
,”
Proc. Inst. Mech. Eng.
0020-3483,
2
, pp.
222
235
.
2.
Bowden
,
F. P.
, and
Ridler
,
K. E. W.
, 1936, “
A Note on the Surface Temperature of Sliding Metals
,”
Proc. R. Soc. London, Ser. A
1364-5021,
151
, pp.
431
432
.
3.
Jaeger
,
J. C.
, 1942, “
Moving Sources of Heat and the Temperature at Sliding Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
76
, pp.
203
224
.
4.
Archard
,
J. F.
, 1959, “
The Temperature of Rubbing Surfaces
,”
Wear
0043-1648,
2
, pp.
438
455
.
5.
Ling
,
F. F.
, 1969, “
On Temperature Transients in Sliding Interface
,”
ASME J. Lubr. Technol.
0022-2305,
91
, pp.
397
405
.
6.
Wolf
,
R.
, 1990, “
The Influence of Surface Roughness Texture and Scuffing in Sliding Contact
,”
Wear
0043-1648,
143
, pp.
99
117
.
7.
Tian
,
X.
, and
Kennedy
,
F. E.
, 1993, “
Contact Surface Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding
,”
ASME J. Tribol.
0742-4787,
115
, pp.
411
418
.
8.
Aramaki
,
H.
,
Cheng
,
H. S.
, and
Chung
,
Y.
, 1993, “
The Contact Between Rough Surfaces with Longitudinal Texture-Part 2: Flash Temperature
,”
ASME J. Tribol.
0742-4787,
115
, pp.
425
431
.
9.
Sinclair
,
G. B.
, 1994, “
On Multiple Moving Sources of Heat and Implications for Flash Temperatures
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
230
233
.
10.
Guha
,
D.
, and
Roy Chowdhury
,
S. K.
, 1996, “
The Effect of Surface Roughness on the Temperature at the Contact Between Sliding Bodies
,”
Wear
0043-1648,
197
, pp.
63
73
.
11.
Kennedy
,
F. E.
, 1981, “
Surface Temperatures in Sliding Systems—A Finite Element Analysis
,”
ASME J. Lubr. Technol.
0022-2305,
103
, pp.
90
96
.
12.
Gecim
,
B.
, and
Winer
,
W. O.
, 1985, “
Transient Temperatures in the Vicinity of an Asperity Contact
,”
ASME J. Tribol.
0742-4787,
107
, pp.
333
342
.
13.
Kuhlmann
,
D.
, 1986, “
Sample Calculations of Flash Temperatures at a Silver-Graphite Electric Contact Sliding on Copper
,”
Wear
0043-1648,
107
, pp.
71
90
.
14.
Quinn
,
T. F. J.
, and
Winer
,
W. O.
, 1985, “
The Thermal Aspects of Oxidational Wear
,”
Wear
0043-1648,
102
, pp.
67
80
.
15.
Johnson
,
K. L.
, and
Greenwood
,
J. A.
, 1997, “
An Adhesion Map for the Contact of Elastic Spheres
,”
J. Colloid Interface Sci.
0021-9797,
192
, pp.
326
33
.
16.
Bradley
,
R. S.
, 1932, “
The Cohesive Force between Solid Surfaces and the Surface Energy of Solids
,”
Philos. Mag.
0031-8086,
13
, pp.
853
862
.
17.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
324
, pp.
301
313
.
18.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
, 1975, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
0021-9797,
53
(
2
), pp.
314
326
.
19.
Maugis
,
D.
, 1992, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
0021-9797,
150
, pp.
243
269
.
20.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Adhesion Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
, pp.
50
56
.
21.
Pollock
,
H. M.
, 1978, “
Contact Adhesion between Solids in Vacuum: II. Deformation and Interfacial Energy
,”
J. Phys. D
0022-3727,
11
, pp.
39
54
.
22.
Carpick
,
R. W.
,
Agrait
,
N.
,
Ogletree
,
D. F.
, and
Salmeron
,
M.
, 1996b, “
Variation of the Interfacial Shear Strength and Adhesion of a Nanometer-Sized Contact
,”
Langmuir
0743-7463,
12
, pp.
3334
3340
.
23.
Homola
,
A. M.
,
Israelachvili
,
J. N.
,
McGuiggan
,
P. M.
, and
Gee
,
M. L.
, 1990, “
Fundamental Experimental Studies in Tribology: The Transition from ‘Interfacial’ Friction of Undamaged Molecularly Smooth Surfaces to ‘Normal’ Friction with Wear
,”
Wear
0043-1648,
136
, pp.
65
83
.
24.
Israelachvili
,
J.
, 1992, “
Adhesion, Friction and Lubrication of Molecularly Smooth Surfaces
,”
Fundamentals of Friction: Macroscopic and Microscopic Processes
,
NATO ASI Series E
,
I. L.
Singer
and
H. M.
Pollock
, eds.,
Kluwer Academic
, Dordrecht, Vol.
220
, p.
351
.
25.
Johnson
,
K. L.
, 1997, “
Adhesion and Friction Between a Smooth Elastic Spherical Asperity and a Plane Surface
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
163
179
.
26.
Pollock
,
H. M.
, 1992, “
Surface Forces and Adhesion
,”
Fundamentals of Friction: Macroscopic and Microscopic Processes
,
I. L.
Singer
and
H. M.
Pollock
, eds.,
Kluwer Academic
, pp.
77
94
.
27.
Johnson
,
K. L.
, 1981, “
Aspects of Friction
,”
Friction and Traction
,
D.
Dowson
,
C. M.
Taylor
,
M.
Godet
, and
D.
Berttie
, eds.,
Westbury House
, Guildford, p.
3
.
28.
Skinner
,
J.
, and
Gane
,
N.
, 1972, “
Sliding Friction Under a Negative Load
,”
J. Phys. D
0022-3727,
5
, pp.
2087
2094
.
29.
Briggs
,
G. A. D.
, and
Briscoe
,
B. J.
, 1975, “
The Dissipation of Energy in the Friction of Rubber
,”
Wear
0043-1648,
33
, pp.
357
364
.
30.
Roberts
,
A. D.
, and
Thomas
,
A. G.
, 1975, “
The Adhesion and Friction of Smooth Rubber Surfaces
,”
Wear
0043-1648,
33
, pp.
45
64
.
31.
Maugis
,
D.
,
Andarelli
,
G. D.
,
Heurtel
,
A.
, and
Courtel
,
R.
, 1976, “
Adhesion and Friction on Al Thin Foils Related to Observed Dislocation Density
,”
ASLE Trans.
0569-8197,
21
(
1
), pp.
1
19
.
32.
Savkoor
,
A. R.
, and
Briggs
,
G. A. D.
, 1977, “
The Effect of a Tangential Force on the Contact of Elastic Solids in Adhesion
,”
Proc. R. Soc. London, Ser. A
1364-5021,
356
, pp.
103
114
.
33.
Blau
,
P. J.
, 1992, “
Scale Effects in Sliding Friction: An Experimental Study
,”
Fundamentals of Friction: Macroscopic and Microscopic Processes
,
I. L.
Singer
and
H. M.
Pollock
, eds.,
Kluwer Academic
.
34.
McClelland
,
G. M.
, and
Glosli
,
J. N.
, 1992, “
Friction at the Atomic Scale
,”
Fundamentals of Friction: Macroscopic and Microscopic Processes
,
I. L.
Singer
and
H. M.
Pollock
, eds.,
Kluwer Academic
.
35.
Landman
,
U.
,
Luedtke
,
W. D.
, and
Ringer
,
E. M.
, 1992, “
Molecular Dynamics Simulations of Adhesive Contact Formation and Friction
,”
Fundamentals of Friction: Macroscopic and Microscopic Processes
,
I. L.
Singer
and
H. M.
Pollock
, eds.,
Kluwer Academic
.
36.
Roy Chowdhury
,
S. K.
, and
Ghosh
,
P.
, 1994, “
Adhesion and Adhesional Friction at the Contact Between Solids
,”
Wear
0043-1648,
174
, pp.
9
19
.
37.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
38.
Sayles
,
R. S.
, and
Thomas
,
T. R.
, 1978, “
Surface Topography as a Non-Stationary Random Process
,”
Nature (London)
0028-0836,
271
, pp.
431
434
.
39.
Greenwood
,
J. A.
, 1984, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc. London, Ser. A
1364-5021,
393
, pp.
133
157
.
40.
Majumdar
,
A.
, and
Tien
,
C. L.
, 1990, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
0043-1648,
136
, pp.
313
327
.
41.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
, 1970, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
1364-5021,
316
, pp.
97
121
.
42.
Bora
,
C. K.
,
Flater
,
E. E.
,
Street
,
M. D.
,
Redmond
,
J. M.
,
Starr
,
M. J.
,
Carpick
,
R. W.
, and
Plesh
,
M. E.
, 2005, “
Multiscale Roughness and Modeling of MEMS Interfaces
,”
Tribol. Lett.
1023-8883,
19
(
1
), pp.
37
48
.
43.
Berry
,
M. V.
, and
Lewis
,
Z. V.
, 1980, “
On the Weierstrass-Mandelbrot Fractal Function
,”
Proc. R. Soc. London, Ser. A
1364-5021,
370
, pp.
459
484
.
44.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1994, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime. Part I: Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
0742-4787,
116
, pp.
812
823
.
45.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1994, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime. Part II: Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
0742-4787,
116
, pp.
824
832
.
46.
Wang
,
S.
, and
Komvopoulos
,
K.
, 1995, “
A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces
,”
ASME J. Tribol.
0742-4787,
117
(
2
), pp.
203
215
.
47.
Bhushan
,
B.
, and
Nosonovsky
,
M.
, 2004, “
Scale Effects in Dry and Wet Friction, Wear, and Interface Temperature
,”
Nanotechnology
0957-4484,
15
, pp.
749
761
.
48.
Roy Chowdhury
,
S. K.
, and
Pollock
,
H. M.
, 1981, “
Adhesion Between Metal Surfaces: The Effect of Surface Roughness
,”
Wear
0043-1648,
66
, pp.
307
321
.
49.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic–Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
50.
Mukherjee
,
S.
,
Ali
,
S. M.
, and
Sahoo
,
P.
, 2004, “
An Improved Elastic-Plastic Contact Model of Rough Surfaces in the Presence of Adhesion
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
218
, pp.
557
567
.
51.
Mindlin
,
R. D.
, 1949, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
0021-8936,
16
, pp.
259
268
.
52.
Johnson
,
K. L.
, 1997, “
Adhesion and Friction Between a Smooth Elastic Spherical Asperity and a Plane Surface
,”
Proc. R. Soc. London, Ser. A
1364-5021,
453
, pp.
163
179
.
53.
Hamilton
,
G. M.
, 1983, “
Explicit Equations for the Stresses Beneath a Sliding Spherical Contact
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
197
, pp.
53
59
.
54.
Tian
,
X.
, and
Kennedy
,
F. E.
, 1994, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
116
, pp.
167
174
.
55.
Holm
,
R.
, 1948, “
Calculation of the Temperature Development in a Contact Heated in the Contact Surface and Application to the Problem of the Temperature Rise in a Sliding Contact
,”
J. Appl. Phys.
0021-8979,
19
, pp.
361
366
.
56.
Mandelbrot
,
B. B.
, 1967, “
How Long is the Coastline of Britain? Statistical Self-Similarity and Fractional Dimension
,”
Science
0036-8075,
155
, pp.
636
638
.
57.
Ling
,
F. F.
, 1990, “
Fractals, Engineering Surfaces and Tribology
,”
Wear
0043-1648,
136
, pp.
141
156
.
58.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1990, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
0742-4787,
112
, pp.
205
216
.
59.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic–Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
60.
Fuller
,
K. N. G.
, and
Tabor
,
D.
, 1975, “
The Effect of Surface Roughness on the Adhesion of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
345
, pp.
327
342
.
61.
Sahoo
,
P.
, and
Roy Chowdhury
,
S. K.
, 1996, “
A Fractal Analysis of Adhesion at the Contact Between Rough Solids
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
210
, pp.
269
279
.
62.
Sahoo
,
P.
, and
Roy Chowdhury
,
S. K.
, 2000, “
A Fractal Analysis of Adhesive Friction Between Rough Solids in Gentle Sliding
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
214
, pp.
583
595
.
63.
Lee
,
S. C.
, and
Polycarpou
,
A. A.
, 2004, “
Adhesion Forces for Sub-10nm Flying-Height Magnetic Storage Head Disk Interfaces
,”
ASME J. Tribol.
0742-4787,
126
, pp.
334
341
.
You do not currently have access to this content.