An axisymmetrical hemispherical asperity in contact with a rigid flat is modeled for an elastic perfectly plastic material. The present analysis extends the work (sphere in contact with a flat plate) of Kogut–Etsion Model and Jackson–Green Model and addresses some aspects uncovered in the above models. This paper shows the critical values in the dimensionless interference ratios (ωωc) for the evolution of the elastic core and the plastic region within the asperity for different YE ratios. The present analysis also covers higher interference ratios, and the results are applied to show the difference in the calculation of real contact area for the entire surface with other existing models. The statistical model developed to calculate the real contact area and the contact load for the entire surfaces based on the finite element method (FEM) single asperity model with the elastic perfectly plastic assumption depends on the YE ratio of the material.

1.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University
,
Cambridge
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
3.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Trans. ASME, J. Tribol.
0742-4787,
109
(
2
), pp.
257
263
.
4.
Abbott
,
E. J.
, and
Firestone
,
F. A.
, 1933, “
Specifying Surface Quality-A Method Based on Accurate Measurement and Comparison
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
55
(
9
), pp.
569
572
.
5.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
, 2000, “
An Asperity Micro Contact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow
,”
Trans. ASME, J. Tribol.
0742-4787,
122
(
1
), pp.
86
93
.
6.
Barber
,
J. R.
, and
Ciavarella
,
M.
, 2000, “
Contact Mechanics
,”
Int. J. Solids Struct.
0020-7683,
37
(
1–2
), pp.
29
43
.
7.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
69
(
5
), pp.
657
662
.
8.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
An Improved Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Third AIMETA International Tribology Conference
,
Salerno, Italy
.
9.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
1040-2004,
46
(
3
), pp.
383
390
.
10.
Jackson
,
R. L.
, and
Green
,
I.
, 2005, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
Trans. ASME, J. Tribol.
0742-4787,
127
(
2
), pp.
343
354
.
11.
Jackson
,
R. L.
, and
Green
,
I.
, 2006, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
0301-679X,
39
(
9
), pp.
906
914
.
12.
Jackson
,
R. L.
, and
Streator
,
J. L.
, 2006, “
A Multi-Scale Model for Contact Between Rough Surfaces
,”
Wear
0043-1648,
261
(
11–12
), pp.
1337
1347
.
13.
Quicksall
,
J.
,
Jackson
,
R. L.
, and
Green
,
I.
, 2004, “
Elasto-Plastic Hemispherical Contact for Varying Mechanical Properties
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
218
, pp.
313
322
.
14.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
, 2006, “
The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact
,”
Int. J. Solids Struct.
0020-7683,
43
(
22–23
), pp.
5736
5749
.
15.
Ovcharenko
,
A.
,
Halperin
,
G.
,
Verberne
,
G.
, and
Etsion
,
I.
, 2007, “
In Situ Investigation of the Contact Area in Elastic-Plastic Spherical Contact During Loading-Unloading
,”
Tribol. Lett.
1023-8883,
25
(
2
), pp.
153
160
.
You do not currently have access to this content.