The applications of foil air bearings have been extended for use in a wide range of turbomachineries with high speed and high temperature. Lubricant temperature becomes an important factor in the performance of foil air bearings, especially at high rotational speeds and high loads or at high ambient temperature. This study presents a thermohydrodynamic (THD) analysis of multiwound foil bearing, in which the Reynolds’ equation is solved with gas viscosity as a function of temperature that is obtained from the energy equation. Lobatto point quadrature is utilized to accelerate the iteration process with a sparse mesh across film thickness. A finite element model of the foil is used to describe the foil elasticity. An iterative procedure is performed between the Reynolds equation, the foil elastic deflection equation, and the energy equation until convergence is achieved. A three-dimensional temperature prediction of air film is presented, and a comparison of THD to isothermal results is made to emphasize the importance of thermal effects. Finally, published experimental data are used to validate this numerical solution.

1.
Radil
,
K. C.
, and
Dellacorte
,
C.
, 2002, “
The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings
,”
Tribol. Trans.
1040-2004,
45
(
2
), pp.
199
204
.
2.
Heshmat
,
H.
, 2000, “
Operation of Foil Bearings Beyond the Bending Critical Mode
,”
ASME J. Tribol.
0742-4787,
122
(
1
), pp.
192
198
.
3.
Dellacorte
,
C.
, 1998, “
A New Foil Air Bearing Test Rig for Use to 700 and 70000 rpm
,”
Tribol. Trans.
1040-2004,
41
(
3
), pp.
335
340
.
4.
Heshmat
,
H.
,
Hryniewicz
,
P.
,
Walton
,
J. F.
,
Willis
,
J. P.
,
Jahanmir
,
S.
, and
DellaCorte
,
C.
, 2005, “
Low-Friction Wear-Resistant Coatings for High-Temperature Foil Bearings
,”
Tribol. Int.
,
38
, pp.
1059
1075
. 0301-679X
5.
Howard
,
S. A.
,
DellaCrote
,
C.
,
Valco
,
M. J.
,
Prahl
,
J. M.
, and
Heshmat
,
H.
, 2001, “
Dynamic Stiffness and Damping Characteristics of a High Temperature Air Foil Journal Bearing
,”
Tribol. Trans.
1040-2004,
44
(
4
), pp.
657
663
.
6.
Salehi
,
M.
, and
Heshmat
,
H.
, 2000, “
On the Fluid Flow and Thermal Analysis of a Compliant Surface Foil Bearing and Seal
,”
Tribol. Trans.
1040-2004,
43
(
2
), pp.
318
324
.
7.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
, 2001, “
Thermal Features of Compliant Foil Bearings—Theory and Experiments
,”
ASME J. Tribol.
0742-4787,
123
(
3
), pp.
566
571
.
8.
Peng
,
Z. C.
, and
Khonsari
,
M. M.
, 2006, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
534
541
.
9.
Radil
,
K.
, and
Zeszotek
,
M.
, 2004, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
Tribol. Trans.
1040-2004,
47
(
4
), pp.
470
479
.
10.
Elrod
,
H. G.
, and
Brewe
,
D. E.
, 1986, “
Thermohydrodynamic Analysis for Laminar Lubricating Films
,” NASA Technical Memorandum No. 88845.
11.
Elrod
,
H. G.
, 1991, “
Efficient Numerical Method for Computation of the Thermohydrodynamics of Laminar Lubricating Films
,”
ASME J. Tribol.
0742-4787,
113
(
3
), pp.
506
511
.
12.
Vijayaraghavan
,
D.
, 1996, “
An Efficient Numerical Procedure for Thermohydrodynamic Analysis of Cavitating Bearings
,”
ASME J. Tribol.
0742-4787,
118
(
3
), pp.
555
563
.
13.
Vijayaraghavan
,
D.
, and
Brewe
,
D. E.
, 1998, “
Effect of Rate of Viscosity Variation on the Performance of Journal Bearings
,”
ASME J. Tribol.
0742-4787,
120
(
1
), pp.
1
7
.
14.
Shyu
,
S. H.
,
Jeng
,
Y. R.
, and
Chang
,
C. C.
, 2004, “
Load Capacity for Adiabatic Infinitely Wide Plane Slider Bearings in the Turbulent Thermohydrodynamic Regime
,”
Tribol. Trans.
1040-2004,
47
(
3
), pp.
396
401
.
15.
Moraru
,
L.
, and
Keith
,
T. G.
, 2007, “
Lobatto Point Quadrature for Thermal Lubrication Problems Involving Compressible Lubricants. EHL Applications
,”
ASME J. Tribol.
0742-4787,
129
(
1
), pp.
194
198
.
16.
Feng
,
K.
, and
Kaneko
,
S.
, 2007, “
A Numerical Calculation Model of Multi Wound Foil Bearing With the Effect of Foil Local Deflection
,”
Journal of System Design and Dynamics
,
1
(
3
), pp.
648
659
.
17.
Hori
,
Y.
, 2006,
Hydrodynamic Lubrication
,
Springer-Verlag
,
Tokyo
, pp.
164
165
.
18.
Khonsari
,
M. M.
, and
Beaman
,
J. J.
, 1986, “
Thermohydrodynamic Analysis of Laminar Incompressible Journal Bearings
,”
ASLE Trans.
0569-8197,
29
(
2
), pp.
141
150
.
19.
LMNO Engineering, Research, and Software, Ltd., 2003, “
Gas Viscosity Calculator
,” http://www.lmnoeng.com/Flow/GasViscosity.htmhttp://www.lmnoeng.com/Flow/GasViscosity.htm
20.
Dowson
,
D.
,
Hudson
,
J. D.
,
Hunter
,
B.
, and
March
,
C.
, 1966–1967, “
An Experimental Investigation of the Thermal Equilibrium of Steadily Loaded Journal Bearings
,”
Proc. Inst. Mech. Eng.
0020-3483,
181
(
3B
), pp.
77
80
.
21.
Mitsui
,
J.
,
Hori
,
Y.
, and
Tanaka
,
M.
, 1986, “
An Experimental Investigation on the Temperature Distribution in Circular Journal Bearings
,”
ASME J. Tribol.
,
108
(
4
), pp.
621
627
. 0742-4787
22.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
, 1983, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,”
105
(
4
), pp.
647
655
.
23.
Moraru
,
L.
, 2005, “
Numerical Predictions and Measurements in the Lubrication of Aeronautical Engine and Transmission Components
,” Ph.D. thesis, The University of Toledo, OH, pp.
157
159
.
You do not currently have access to this content.