Approximate closed-form equations governing the shoulder-shoulder contact of asperities are derived based on a generalization by Chang, Etsion, and Bogy. The work entails the consideration of asperity shoulder-shoulder contact in which the volume conservation is assumed in the plastic flow regime. Shoulder-shoulder asperity contact gives rise to a slanted contact force comprising tangential and normal components. Each force component comprises elastic and plastic terms, which upon statistical summation yields the force component for the elastic and plastic forces for the contact of two rough surfaces. Half-plane tangential force due to elastic-plastic contact is derived through the statistical summation of tangential force component along an arbitrary tangential direction. Two sets of equations are found. In the first set of equations the functional forms are simpler and provide approximation of contact force to within 9%. The second set is enhanced equations derived from the first set of approximate equations that achieve an accuracy of within 0.2%.

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
0370-1662,
295
, pp.
300
319
.
2.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1970, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
0020-3483,
185
, pp.
625
633
.
3.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
, pp.
50
56
.
4.
McCool
,
J. I.
, 2000, “
Extending the Capability of the Greenwood Williamson Microcontact Model
,”
ASME J. Tribol.
0742-4787,
122
(
3
), pp.
496
502
.
5.
McCool
,
J. I.
, 1992, “
Non-Gaussian Effects in Microcontact
,”
Int. J. Mach. Tools Manuf.
0890-6955,
32
(
1
), pp.
115
123
.
6.
Polycarpou
,
A. A.
, and
Etsion
,
I.
, 1999, “
Analytical Approximations in Modeling Contacting Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
121
(
2
), pp.
234
239
.
7.
Yu
,
N.
, and
Polycarpou
,
A. A.
, 2002, “
Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
0742-4787,
124
(
2
), pp.
367
376
.
8.
Yu
,
N.
, and
Polycarpou
,
A. A.
, 2004, “
Combining and Contacting of Two Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
0742-4787,
126
(
2
), pp.
225
232
.
9.
Halling
,
J. I.
, and
Nuri
,
K. A.
, 1988, “
The Elastic-Plastic Contact of Rough Surfaces and Its Relevance in Study of Wear
,”
Proc. Inst. Mech. Eng.
0020-3483,
202
, (C4), pp.
269
274
.
10.
So
,
H.
, and
Liu
,
D. C.
, 1991, “
An Elastic-Plastic Model for the Contact of Anisotropic Rough Surface
,”
Wear
0043-1648,
146
, pp.
201
218
.
11.
Abdo
,
J.
, and
Farhang
,
K.
, 2005, “
Elastic-Plastic Contact Model for Rough Surfaces Based on Plastic Asperity Concept
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
495
506
.
12.
Hariri
,
A.
,
Zu
,
J. W.
, and
Ben Mrad
,
R.
, 2006, “
Modeling of Elastic/Plastic Contact Between Nominally Flat Rough Surfaces Using an n-Point Asperity Model
,”
ASME J. Tribol.
0742-4787,
128
(
4
), pp.
876
885
.
13.
Liu
,
T.
,
Liu
,
G.
,
Xie
,
Q.
, and
Wang
,
Q. J.
, 2006, “
Two-Dimensional Adaptive-Surface Elasto-Plastic Asperity Contact Model
,”
ASME J. Tribol.
0742-4787,
128
(
4
), pp.
898
903
.
14.
Lin
,
L. P.
, and
Lin
,
J. F.
, 2006, “
A New Method for Elastic-Plastic Contact Analysis of a Deformable Sphere and a Rigid Flat
,”
ASME J. Tribol.
0742-4787,
128
(
2
), pp.
221
229
.
15.
Nélias
,
D.
,
Boucly
,
V.
, and
Brunet
,
M.
, 2006, “
Elastic-Plastic Contact Between Rough Surfaces: Proposal for a Wear or Running-in Model
,”
ASME J. Tribol.
0742-4787,
128
(
2
), pp.
236
244
.
16.
Jeng
,
Y. R.
, and
Peng
,
S. R.
, 2006, “
Elastic-Plastic Contact Behavior Considering Surfaces With Various Height Distributions
,”
ASME J. Tribol.
0742-4787,
128
(
2
), pp.
245
251
.
17.
Cai
,
S.
, and
Bhushan
,
B.
, 2006, “
Three-Dimensional Dry/Wet Contact Analysis of Multilayered Elastic/Plastic Solids With Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
128
(
1
), pp.
18
31
.
18.
Jackson
,
R. L.
, and
Kogut
,
L.
, 2006, “
A Comparison of Flattening and Indentation Approaches for Contact Mechanics Modeling of Single Asperity Contacts
,”
ASME J. Tribol.
0742-4787,
128
(
1
), pp.
209
212
.
19.
Wang
,
F.
, and
Keer
,
L. M.
, 2005, “
Numerical Simulation for Three Dimensional Elastic-Plastic Contact With Hardening Behavior
,”
ASME J. Tribol.
0742-4787,
127
(
3
), pp.
494
502
.
20.
Lin
,
L. P.
, and
Lin
,
J. F.
, 2005, “
An Elastoplastic Microasperity Contact Model for Metallic Materials
,”
ASME J. Tribol.
0742-4787,
127
(
3
), pp.
666
672
.
21.
Willner
,
K.
, 2004, “
Elasto-Plastic Normal Contact of Three-Dimensional Fractal Surfaces Using Halfspace Theory
,”
ASME J. Tribol.
0742-4787,
126
(
1
), pp.
28
33
.
22.
Kogut
,
L.
, and
Etsion
,
I.
, 2004, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
126
(
1
), pp.
34
40
.
23.
Jeng
,
Y. R.
, and
Wang
,
P. Y.
, 2003, “
An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation
,”
ASME J. Tribol.
0742-4787,
125
(
2
), pp.
232
240
.
24.
Zhao
,
Y.
, and
Chang
,
L.
, 2001, “
A Model of Asperity Interactions in Elastic-Plastic Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
123
(
4
), pp.
857
864
.
25.
Zhao
,
Y.
,
Maietta
,
M. M.
, and
Chang
,
L.
, 2000, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow (99-Trib-21)
,”
ASME J. Tribol.
0742-4787,
122
(
1
), pp.
857
864
.
26.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
(
1
), pp.
1
11
.
27.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1992, “
Elastic-Plastic Contact Model for Bifractal Surfaces
,”
Wear
0043-1648,
153
, pp.
53
64
.
28.
Borodich
,
F. M.
, and
Mosolov
,
A. B.
, 1992, “
Fractal Roughness in Contact Problems
,”
J. Appl. Math.
1110-757X,
56
(
5
), pp.
681
690
.
29.
Yan
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
(
7
), pp.
3617
3624
.
30.
Komvopoulos
,
K.
, and
Yan
,
W.
, 1997, “
A Fractal Analysis of Stiction in Microelectromechanical systems
,”
ASME J. Tribol.
0742-4787,
119
(
3
), pp.
391
400
.
31.
Kogut
,
L.
, and
Jackson
,
R. L.
, 2006, “
A Comparison of Contact Modeling Utilizing Statistical and Fractal Approaches
,”
ASME J. Tribol.
0742-4787,
128
(
1
), pp.
213
217
.
32.
Komvopoulos
,
K.
, and
Yang
,
W.
, 1998, “
Three-Dimensional Elastic-Plastic Fractal Analysis of Surface Adhesion in Microelectromechanical Systems
,”
ASME J. Tribol.
0742-4787,
120
(
4
), pp.
808
812
.
33.
Chung
,
J. C.
, and
Lin
,
J. F.
, 2004, “
Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
126
(
4
), pp.
646
654
.
34.
Yang
,
J.
, and
Komvopoulos
,
K.
, 2005, “
A Mechanics Approach to Static Friction of Elastic-Plastic Fractal Surfaces
,”
ASME J. Tribol.
0742-4787,
127
(
2
), pp.
315
324
.
35.
Sepehri
,
A.
, and
Farhang
,
K.
, 2008, “
On Elastic Interaction of Nominally Flat Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
130
(
1
), p.
011014
.
You do not currently have access to this content.