To improve the performance of a reversible rotation herringbone journal bearing (Rev-HGJB), this study uses reversible elliptical grooves on a journal bearing (Rev-EGJB) and numerically analyzes its characteristics, utilizing the spectral element method. Load capacity, pressure distribution, power loss, and dimensionless radial stiffness of the Rev-EGJB are compared with those of the Rev-HGJB. This comparison shows that the introduced Rev-EGJB exhibits a higher load capacity and a lower power loss than the Rev-HGJB. The pressure region in the Rev-EGJB is higher than that in the Rev-HGJB, which is achieved not only in the pressure-generated region, but also in the pressure-restored region. The load distributions of the Rev-HGJB and Rev-EGJB are also compared in order to determine how the elliptical grooves enhance the load characteristics. The optimum groove parameters of the Rev-EGJB at an eccentricity of 0.1 are investigated by studying the groove parametric matrix, which is given by taking several values in the effective range of each groove parameter. Ultimately, the radial stiffness of the Rev-EGJB with grooved bearing was also shown to be greater compared with that of a Rev-HGJB with optimum geometry; thus, the Rev-EGJB is more stable than the Rev-HGJB when the bearing is grooved.

1.
Asada
,
T.
,
Saito
,
H.
,
Asaida
,
Y.
, and
Itoh
,
K.
, 2002, “
Design of Hydrodynamic Bearings for High-Speed HDD
,”
Microsyst. Technol.
0946-7076,
8
(
2–3
), pp.
220
226
.
2.
Liu
,
C. -S.
,
Lin
,
P. -D.
, and
Tsai
,
M. -C.
, 2009, “
A Miniature Spindle Motor With Fluid Dynamic Bearings for Portable Storage Device Applications
,”
Microsyst. Technol.
0946-7076,
15
(
7
), pp.
1001
1007
.
3.
Chao
,
P. C. P.
, and
Huang
,
J. S.
, 2005, “
Calculating Rotordynamic Coefficients of a Ferrofluid-Lubricated and Herringbone-Grooved Journal Bearing via Finite Difference Analysis
,”
Tribol. Lett.
1023-8883,
19
(
2
), pp.
99
109
.
4.
Leuthold
,
H.
,
Jennings
,
D. J.
,
Nagarathnam
,
L.
,
Grantz
,
A.
, and
Parsoneault
,
S.
, 1999, U.S. Patent No. 5,908,247.
5.
Liu
,
C. -S.
,
Tsai
,
M. -C.
,
Yen
,
R. -H.
,
Lin
,
P. -D.
, and
Chen
,
C. -Y.
, 2010, “
Design and Experimental Verification of Novel Hydrodynamic Grooved Journal Bearing
,”
J. Chin. Soc. Mech. Eng.
0257-9731,
31
(
2
), pp.
137
144
.
6.
Yen
,
R. -H.
, and
Chen
,
C. -Y.
, 2010, “
Enhancement of Journal Bearings Characteristics Using Novel Elliptical Grooves
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
224
(
3
), pp.
259
269
.
7.
Kang
,
K.
,
Rhim
,
Y.
, and
Sung
,
K.
, 1996, “
A Study of the Oil-Lubricated Herringbone-Grooved Journal Bearing—Part 1: Numerical Analysis
,”
ASME J. Tribol.
0742-4787,
118
(
4
), pp.
906
911
.
8.
Gad
,
A. M.
,
Nemat-Alla
,
M. M.
,
Khalil
,
A. A.
, and
Nasr
,
A. M.
, 2006, “
On the Optimum Groove Geometry for Herringbone Grooved Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
(
3
), pp.
585
593
.
9.
Kawabata
,
N.
,
Ozawa
,
Y.
,
Kamaya
,
S.
, and
Miyake
,
Y.
, 1989, “
Static Characteristics of the Regular and Reversible Rotation Type Herringbone Grooved Journal Bearing
,”
ASME J. Tribol.
0742-4787,
111
(
3
), pp.
484
490
.
10.
Zhang
,
Q. D.
,
Winoto
,
S. H.
,
Chen
,
S. X.
, and
Yang
,
J. P.
, 2002, “
A Bi-Directional Rotating Fluid Bearing System
,”
Microsyst. Technol.
0946-7076,
8
(
4–5
), pp.
271
277
.
11.
Junmei
,
W.
,
Jiankang
,
W.
,
Lee
,
T. S.
, and
Shu
,
C.
, 2002, “
A Numerical Study of Cavitation Foot-Prints in Liquid-Lubricated Asymmetrical Herringbone Grooved Journal Bearings
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
12
(
5
), pp.
518
540
.
12.
Patera
,
A. T.
, 1984, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
0021-9991,
54
, pp.
468
488
.
13.
Vijayaraghavan
,
D.
, and
Keith
,
J. T. G.
, 1989, “
Development and Evaluation of a Cavitation Algorithm
,”
STLE Tribol. Trans.
1040-2004,
32
, pp.
225
233
.
14.
Zirkelback
,
N.
, and
San Andrés
,
L.
, 1998, “
Finite Element Analysis of Herringbone Groove Journal Bearings: A Parametric Study
,”
ASME J. Tribol.
0742-4787,
120
(
2
), pp.
234
240
.
15.
Vohr
,
J. H.
, and
Chow
,
C. Y.
, 1965, “
Characteristics of Herringbone Grooved Gas Lubricated Journal Bearings
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
568
578
.
16.
Chen
,
C. -Y.
,
Yen
,
R. -H.
, and
Chang
,
C. -C.
, 2010, “
Spectral Element Analysis of Herringbone-Grooved Journal Bearings With Groove-Ridge Discontinuity
,”
Int. J. Numer. Methods Fluids
0271-2091, in press.
17.
Jiankang
,
W.
,
Anfeng
,
L.
,
Lee
,
T. S.
,
Shu
,
C.
, and
Junmei
,
W.
, 2004, “
Operator-Splitting Method for the Analysis of Cavitation in Liquid-Lubricated Herringbone Grooved Journal Bearings
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
, pp.
765
775
.
18.
Hirs
,
G. G.
, 1965, “
The Load Capacity and Stability Characteristics of Hydrodynamic Grooved Journal Bearings
,”
Tribol. Trans.
1040-2004,
8
, pp.
296
305
.
You do not currently have access to this content.