This manuscript investigates the motion of a micropart on a dry nonlubricated controlled deformable surface considering the dynamically changing microforces while in contact with the surface. The motion analysis of a micropart on a flexible surface under controlled deformation is the first step to initiate feasibility of a micromanipulation device. At the micro/nanoscale, the surface force of attraction becomes more significant than the inertia force; thus motion analysis requires estimating and accommodating these forces in a dynamic model. The model considers microscale forces and surface roughness conditions (asperity deformation), while dynamically evaluating the friction coefficient and attraction force due to the dynamic asperity deformation as the micropart moves on a controlled deformation active surface. The parameters considered in the model include the micropart mass and size, the relative roughness between the micropart and surface, the surface and micropart material, and input actuator frequency, stroke, and deformation profile. The simulation results indicate that predictable micropart motion could be achieved but only within a certain range of input actuator frequencies. At lower frequencies no motion is possible while at higher frequencies the micropart detaches from the surface. The understanding of the effects of the microforces on the dynamic model and micropart motion would pave the way towards controlled micropart translocation and manipulation employing a flexible surface for microassembly or for processes requiring controlled micropart handling for heterogeneous microdevice mass production.

References

1.
Petrovic
,
D.
,
Chatzitheodoridis
,
E.
,
Popovic
,
G.
,
Del Medico
,
O.
,
Almansz
,
A.
,
Brenner
,
W.
,
Detter
,
H.
,
Martins
,
R.
, and
Fortunato
,
E.
, 2001, “
Design of a Mechanical Gripper for Assembly of Microparts
,”
Proceedings of the XXX Convegno Nazionale AIAS-Alghero (SS)
,
12
, pp.
1369
1373
.
2.
Erdmann
,
M. A.
, and
Mason
,
M. T.
, 1988,
“An Exploration of Sensorless Manipulation,”
IEEE J. Rob. Autom.
,
4
(
4
), pp.
369
379
.
3.
Goldberg
,
K. Y.
, 1993, “
Orienting Polygonal Parts Without Sensors
,”
Algorithmica
,
10
(
2
), pp.
201
225
.
4.
Böhringer
,
K. F.
,
Donald
,
B. R.
,
Kavraki
,
L. E.
, and
Lamiraux
,
F.
, 2000, “
Part Orientation With One or Two Stable Equilibria Using Programmable Force Fields
,”
IEEE Trans. Rob. Autom.
,
16
(
2
), pp.
157
170
.
5.
Bohringer
,
K. F.
,
Donald
,
B. R.
,
Macdonald
,
N. C.
,
Kovacs
,
G. T. A.
, and
Suh
,
J. W.
, 1997,
“Computational Methods for Design and Control of MEMS Micromanipulator Arrays,”
IEEE Trans. Rob. Autom.
,
4
(
1
), pp.
17
29
.
6.
Bohringer
,
K. F.
,
Donald
,
B. R.
, and
Macdonald
,
N. C.
, 1997, “
Upper and Lower Bounds for Programmable Vector Fields With Applications to MEMS and Vibratory Plate Parts Feeders
,” in
International Workshop on Algorithmic Foundations of Robotics (WAFR)
,
J. P.
Laumond
and
M.
Overmars
,
A.K.
Peters
, eds.,
Wellesley, Mass.
, pp.
255
276
.
7.
Jacobson
,
J. D.
,
Goodwin-Johansson
,
S. H.
,
Bobbio
,
S. M.
,
Bartlett
,
C. A.
, and
Yadon
,
L. N.
, 1995,
“Integrated Force Arrays: Theory and Modeling of Static Operation,”
IEEE Journal of MEMS
,
4
(
3
), pp.
139
150
.
8.
Fujita
,
H.
,
Ataka
,
M.
, and
Konishi
,
S.
, 1994, “
Cooperative Work of Arrayed Microactuators
,”
IECON’94, 20th International Conference Industrial Electronics, Control and Instrumentation
,
3
, pp.
1478
1482
.
9.
Pister
,
K. S. J.
,
Fearing
,
R. S.
, and
Howe
,
R. T.
, 1990, “
A Planar Air Levitated Electrostatic Actuator System
,”
IEEE Workshop on Micro Electro Mechanical Systems
, Napa Valley, CA Feb. 12–14, pp.
67
71
.
10.
Furuhata
,
T.
,
Hirano
,
T.
, and
Fujita
,
H.
, 1991, “
Array-Driven Ultrasonic Microactuators
,”
International Conference on Solid-State Sensors and Actuators
,
Digest of Technical Papers
, TRANSDUCERS’91, San Franscisco, CA, pp.
1056
1059
.
11.
Gui-Xian
,
L. I.
,
Yun-Feng
,
P.
, and
Xin
,
Z.
, 2008, “
Analysis of Micro-Forces between Micro-Parts and Their Influence Factors in MEMS
”.
12.
Savia
,
M.
, and
Koivo
,
H. N.
, 2009, “
Contact Micromanipulation—Survey of Strategies
,”
IEEE/ASME Trans. Mechatron.
,
14
(
4
), pp.
504
514
.
13.
Kogut
,
L.
, and
Etsion
,
I.
, 2004,
“A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces,”
ASME J. Tribol.
,
126
(
1
), pp.
34
40
.
14.
Rollot
,
Y.
,
Regnier
,
S.
, and
Guinot
,
J. C.
, 1999,
“Simulation of Micro-Manipulations: Adhesion Forces and Specific Dynamic Models,”
Int. J. Adhes. Adhes.
,
19
(
1
), pp.
35
48
.
15.
Zhou
,
S.-A.
, 2003,
“On the Forces in Microelectromechanical Systems,”
Int. J. Eng., Sci.
,
41
(
3–5
), pp.
313
335
.
16.
Genet
,
C.
,
Lambrecht
,
A.
, and
Reynaud
,
S.
, 2003, “
Casimir Force and the Quantum Theory of Lossy Optical Cavities
,”
Phys. Rev. A
,
67
(
4
), p.
043811
.
17.
Neto
,
P. A. M.
,
Lambrecht
,
A.
, and
Reynaud
,
S.
, 2005, “
Casimir Effect With Rough Metallic Mirrors
,”
Phys. Rev. A
,
72
(
1
), p.
012115
.
18.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London
,
324
(
1558
), pp.
301
313
.
19.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
, 1975,
“Effect of Contact Deformations on the Adhesion of Particles,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.
20.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987,
“An Elastic-Plastic Model for the Contact of Rough Surfaces,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
21.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988,
“Adhesion Model for Metallic Rough Surfaces,”
ASME J. Tribol.
,
110
(
1
), pp.
50
56
.
22.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
,
295
(
1442
), pp.
300
319
.
23.
Kogut
,
L.
, and
Etsion
,
I.
, 2002,
“Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat,”
J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
24.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
, 2000,
“An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
25.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
, 1970, “
The Contact of Two Nominally Flat Rough Surfaces
,”
ARCHIVE: Proceedings of the Institution of Mechanical Engineers
1847–1982,
185
(1970), pp.
625
634
.
26.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988,
“Static Friction Coefficient Model for Metallic Rough Surfaces,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.
27.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
,
125
(
3
), pp.
499
506
.
28.
Jaeger
,
J.
, 2004,
New Solutions in Contact Mechanics
,
WIT Press
,
Southampton, Boston
.
29.
Muller
,
V. M.
,
Derjaguin
,
B. V.
, and
Toporov
,
Y. P.
, 1983, “
On Two Methods of Calculation of the Force of Sticking of an Elastic Sphere to a Rigid Plane
,”
Colloids Surf.
,
7
(
3
), pp.
251
259
.
30.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
, 1976, “
The Limit of Elastic Deformation in the Contact of Rough Surfaces
,”
Mech. Res. Comm.
,
3
, pp.
169
174
.
31.
Johnson
,
K. L.
, 1987,
Contact Mechanics, Cambridge University Press, Cambridge.
32.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol
.,
46
(
3
), pp.
383
390
.
33.
Feng
,
M.
, and
Kenjo
,
T.
, 2007, “
Friction and Wear of Spindle Motor Hydrodynamic Bearings for Information Storage Systems During Startup and Shutdown
,”
Microsyst. Technol.
,
13
(
8
), pp.
987
997
.
34.
Bhushan
,
B.
, 1998, “
Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact
,”
Tribol. Lett.
,
4
(
1
), pp.
1
35
.
35.
Mao
,
K.
,
Sun
,
Y.
, and
Bell
,
T.
, 1996,
“A Numerical Model for the Dry Sliding Contact of Layered Elastic Bodies With Rough Surfaces,”
ASME J. Tribol.
,
39
(
2
), pp.
416
424
.
36.
Oden
,
J. T.
, and
Martins
,
J. A. C.
, 1985, “
Models and Computational Methods for Dynamic Friction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
52
(
1–3
), pp.
527
634
.
37.
Levinson
,
O.
,
Halperin
,
G.
, and
Varenberg
,
M.
, 2005, “
Experimental Investigation of the Elastic–Plastic Contact Area and Static Friction of a Sphere on Flat
,”
ASME J. Tribol.
,
127
(
1
), pp.
47
51
.
38.
Yoon
,
E. S.
,
Singh
,
R. A.
,
Oh
,
H. J.
, and
Kong
,
H.
, 2005, “
The Effect of Contact Area on Nano/Micro-Scale Friction
,”
Wear
,
259
(
7–12
), pp.
1424
1431
.
39.
Woods
,
R.
,
Department of Mechanical and Aerospace Engineering
,
The University of Texas at Arlington
, January 2010, personal communication.
You do not currently have access to this content.