Hybrid nanoreinforcement (yttria and copper) simultaneously increased strength and ductility of pure magnesium when synthesized using blend-press-microwave sinter powder metallurgy technique. Wear behavior of the magnesium hybrid nanocomposite containing 0.7 vol. % Y2O3 and 0.3 vol. % Cu reinforcement investigated using pin-on-disk dry sliding tests against hardened tool steel with a constant sliding speed of 1 m/s under a range of loads from 5 to 30 N for sliding distance up to 1000 m. Scanning electron microscopy identified abrasion and delamination as primary wear mechanisms in the hybrid nanocomposite. Limited thermal softening was observed at relatively higher test load. Adhesive wear, a common mechanism for magnesium composite, was absent in this hybrid nanocomposite wear process under the sliding condition used in this study.

References

1.
Kainer
,
K. U.
,
2003
,
Magnesium Alloys and Technology
,
Wiley–VCH Verlag GmbH and Co., KGaA
,
Weinheim, Germany
.
2.
Logan
,
S. D.
,
2007
, “
A Lightweight Automobile Body Concept Featuring Ultra-Large, Thin-Wall Structural Magnesium Castings
,”
Magnesium Technology 2007
,
R. S.
Beals
,
A. A.
Luo
,
N. R.
Neelameggham
, and
M. O.
Pekguleryuz
, eds.,
The Minerals, Metals and Materials Society
, Orlando, FL, pp.
41
49
.
3.
Ye
,
H. Z.
, and
Liu
,
X. Y.
,
2004
, “
Review of Recent Studies in Magnesium Matrix Composites
,”
J. Mater. Sci.
,
39
(2), pp.
6153
6171
.10.1023/B:JMSC.0000043583.47148.31
4.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2005
, “
Enhancing Physical and Mechanical Properties of Mg Using Nano-Sized Al2O3 Particulates as Reinforcement
,”
Metall. Mater. Trans. A
,
36
(8), pp.
2253
2258
.10.1007/s11661-005-0344-4
5.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2007
, “
Development of Nano-Y2O3 Containing Magnesium Nanocomposites Using Solidification Processing
,”
J. Alloys Compd.
,
429
(
1–2
), pp.
176
183
.10.1016/j.jallcom.2006.04.033
6.
Paramsothy
,
M.
,
Hassan
,
S. F.
,
Srikanth
,
N.
, and
Gupta
,
M.
,
2010
, “
Simultaneous Enhancement of Tensile/Compressive Strength and Ductility of Magnesium Alloy AZ31 Using Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
10
(
2
), pp.
956
964
.10.1166/jnn.2010.1809
7.
Srinivasan
,
M.
,
Loganathan
,
C.
,
Kamaraj
,
M.
,
Nguyen
,
Q. B.
,
Gupta
,
M.
, and
Narayanasamy
,
R.
,
2012
, “
Sliding Wear Behaviour of AZ31B Magnesium Alloy and Nano-Composite
,”
Trans. Nonferrous Met. Soc. China
,
22
(1), pp.
60
65
.10.1016/S1003-6326(11)61140-0
8.
Lim
,
C. Y. H.
,
Leo
,
D. K.
,
Ang
,
J. J. S.
, and
Gupta
,
M.
,
2005
, “
Wear of Magnesium Composites Reinforced With Nano-Sized Alumina Particulates
,”
Wear
,
259
(1–6), pp.
620
625
.10.1016/j.wear.2005.02.006
9.
Hassan
,
S. F.
,
Tan
,
M. J.
, and
Gupta
,
M.
,
2008
, “
High Temperature Tensile Properties of Mg/Al2O3 Nanocomposite
,”
Mater. Sci. Eng. A
,
486
(
1–2
), pp.
56
62
.10.1016/j.msea.2007.08.045
10.
Hassan
,
S. F.
,
Paramsothy
,
M.
,
Patel
,
F.
, and
Gupta
,
M.
,
2012
, “
High Temperature Tensile Response of Nano-Al2O3 ReinforcedAZ31 Nanocomposites
,”
Mater. Sci. Eng. A
,
558
(
15
), pp.
278
284
.10.1016/j.msea.2012.08.002
11.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2002
, “
Development of a Ductile Magnesium Composite Materials Using Titanium as Reinforcement
,”
J. Alloys Compd.
,
345
(1–2), pp.
246
251
.10.1016/S0925-8388(02)00413-9
12.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2003
, “
Development of High Strength Magnesium-Copper Based Hybrid Composites With Enhanced Tensile Properties
,”
Mater. Sci. Technol.
,
19
(2), pp.
253
259
.10.1179/026708303225009346
13.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2002
, “
Development of High Strength Magnesium Based Composites Using Elemental Nickel Particulates as Reinforcement
,”
J. Mater. Sci.
,
37
(12), pp.
2467
2474
.10.1023/A:1015475103720
14.
Tun
,
K. S.
,
Gupta
,
M.
, and
Srivatsan
,
T. S.
,
2010
, “
Investigating Influence of Hybrid (Yttria + Copper) Nanoparticulate Reinforcements on Microstructural Development and Tensile Response of Magnesium
,”
Mater. Sci. Technol.
,
26
(
1
), pp.
87
94
.10.1179/174328408X388095
15.
Tun
,
K. S.
, and
Gupta
,
M.
,
2009
, “
Development of Magnesium/(Yttria + Nickel) Hybrid Nanocomposites Using Hybrid Microwave Sintering: Microstructure and Tensile Properties
,”
J. Alloys Compd.
,
487
(
1–2
), pp.
76
82
.10.1016/j.jallcom.2009.07.117
16.
Tun
,
K. S.
, and
Gupta
,
M.
,
2008
, “
Effect of Extrusion Ratio on Microstructure and Mechanical Properties of Microwave-Sintered Magnesium and Mg/Y2O3 Nanocomposite
,”
J. Mater. Sci.
,
43
(
13
), pp.
4503
4511
.10.1007/s10853-008-2649-3
17.
Gupta
,
M.
, and
Wong
,
W. L. E.
,
2005
, “
Enhancing Overall Mechanical Performance of Metallic Materials Using Two-Directional Microwave Assisted Rapid Sintering
,”
Scr. Mater.
,
52
(6), pp.
479
483
.10.1016/j.scriptamat.2004.11.006
18.
Hokkirigawa
,
K.
, and
Kato
,
K.
,
1988
, “
An Experimental and Theoretical Investigation of Ploughing, Cutting and Wedge Formation During Abrasive Wear
,”
Tribol. Int.
,
21
(1), pp.
151
157
.10.1016/0301-679X(88)90128-4
19.
Ashby
,
M. F.
, and
Jones
,
D. R. H.
,
1996
,
Engineering Materials I
,
Butterworth-Heinemann
,
Boston
.
20.
Westbrook
,
J. H.
,
1967
,
Intermetallic Compounds
,
Wiley
,
New York
,
21.
Lim
,
C. Y. H.
,
Lim
,
S. C.
, and
Gupta
,
M.
,
2003
, “
Wear Behaviour of SiCp-Reinforced Magnesium Matrix Composites
,”
Wear
,
255
(1–6), pp.
629
637
.10.1016/S0043-1648(03)00121-2
22.
Sharma
,
S. C.
,
Anand
,
B.
, and
Krishna
,
M.
,
2000
, “
Evaluation of Sliding Wear Behaviour of Feldspar Particle-Reinforced Magnesium Alloy Composites
,”
Wear
,
241
(1), pp.
33
40
.10.1016/S0043-1648(00)00349-5
23.
Chen
,
H.
, and
Alpas
,
A. T.
,
2000
, “
Sliding Wear Map for the Magnesium Alloy Mg–9Al–0.9Zn (AZ91)
,”
Wear
,
246
(1–2), pp.
106
116
.10.1016/S0043-1648(00)00495-6
24.
Suh
,
N. P.
,
1977
, “
Overview of the Delamination Theory of Wear
,”
Wear
,
44
(1), pp.
1
16
.10.1016/0043-1648(77)90081-3
You do not currently have access to this content.