Friction is a complex phenomenon that arises from the interaction of deforming surface microasperities and adhesive forces at very small length scales. In this work, we use a computational model to understand the effects of various physical parameters on the friction response between two similar linearly elastic-perfectly plastic surfaces. The main ingredients of the computational model are a statistical model of the surface based on a Gaussian autocorrelation function (ACF), a parametric representation of the normal and shear responses of a single microasperity, and a statistical homogenization procedure to compute the overall friction response. The surfaces are assumed to be isotropic in nature. We employ this computational model to develop constitutive relationships for the friction force and coefficient of friction for Aluminum 6061 and stainless steel surfaces. We study the effects of various quantities such as surface roughness, material properties, normal load, and adhesive forces on the overall friction response. Our results show that the model is able to capture a wide variety of friction responses. Our results also suggest that the root mean squared (RMS) roughness of the surface alone is insufficient to describe the friction characteristics of a surface, and that an additional parameter is needed. We propose one such parameter, the aspect ratio, which is the ratio of the RMS roughness to the correlation length.

References

1.
Tabor
,
D.
,
1981
, “
Friction—The Present State of Our Understanding
,”
ASME J. Lubr. Technol.
,
103
(
2
), pp.
169
179
.
2.
Tabor
,
D.
,
1959
, “
Junction Growth in Metallic Friction: The Role of Combined Stresses and Surface Contamination
,”
Proc. R. Soc. London Ser. A
,
251
(
1266
), pp.
378
393
.10.1098/rspa.1959.0114
3.
Paslay
,
P.
, and
Plunkett
,
R.
,
1953
, “
Design of Shrink-Fits
,”
Trans. ASME
,
75
, pp.
1199
1202
.
4.
Stembalski
,
M.
,
Preś
,
P.
, and
Skoczyński
,
W.
,
2013
, “
Determination of the Friction Coefficient as a Function of Sliding Speed and Normal Pressure for Steel C45 and Steel 40HM
,”
Arch. Civil Mech. Eng.
,
13
(
4
), pp.
444
448
.10.1016/j.acme.2013.04.010
5.
Buckley
,
D. H.
,
1977
, “
The Metal-to-Metal Interface and Its Effect on Adhesion and Friction
,”
J. Colloid Interface Sci.
,
58
(
1
), pp.
36
53
.10.1016/0021-9797(77)90369-1
6.
Myshkin
,
N.
,
Petrokovets
,
M.
, and
Kovalev
,
A.
,
2006
, “
Tribology of Polymers: Adhesion, Friction, Wear, and Mass-Transfer
,”
Tribol. Int.
,
38
(
11
), pp.
910
921
.10.1016/j.triboint.2005.07.016
7.
Richardson
,
R.
, and
Nolle
,
H.
,
1976
, “
Surface Friction Under Time-Dependent Loads
,”
Wear
,
37
(
1
), pp.
87
101
.10.1016/0043-1648(76)90183-6
8.
Kato
,
S.
,
Sato
,
N.
, and
Matsubayashi
,
T.
,
1972
, “
Some Considerations on Characteristics of Static Friction of Machine Tool Slideway
,”
ASME J. Lubr. Technol.
,
94
(3), pp.
234
247
.10.1115/1.3451699
9.
Nolle
,
H.
, and
Richardson
,
R.
,
1974
, “
Static Friction Coefficients for Mechanical and Structural Joints
,”
Wear
,
28
(
1
), pp.
1
13
.10.1016/0043-1648(74)90097-0
10.
Rabinowicz
,
E.
,
1971
, “
The Determination of the Compatibility of Metals Through Static Friction Tests
,”
ASLE Trans.
,
14
(
3
), pp.
198
205
.10.1080/05698197108983243
11.
Greenwood
,
J.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London Ser. A
,
295
(
1442
), pp.
300
319
.10.1098/rspa.1966.0242
12.
Persson
,
B.
,
2001
, “
Elastoplastic Contact Between Randomly Rough Surfaces
,”
Phys. Rev. Lett.
,
87
(
11
), p.
116101
.10.1103/PhysRevLett.87.116101
13.
Persson
,
B. N.
,
2006
, “
Contact Mechanics for Randomly Rough Surfaces
,”
Surf. Sci. Rep.
,
61
(
4
), pp.
201
227
.10.1016/j.surfrep.2006.04.001
14.
Carbone
,
G.
, and
Bottiglione
,
F.
,
2008
, “
Asperity Contact Theories: Do They Predict Linearity Between Contact Area and Load?
J. Mech. Phys. Solids
,
56
(
8
), pp.
2555
2572
.10.1016/j.jmps.2008.03.011
15.
Paggi
,
M.
, and
Ciavarella
,
M.
,
2010
, “
The Coefficient of Proportionality κ Between Real Contact Area and Load, With New Asperity Models
,”
Wear
,
268
(
7
), pp.
1020
1029
.10.1016/j.wear.2009.12.038
16.
Manners
,
W.
, and
Greenwood
,
J.
,
2006
, “
Some Observations on Persson's Diffusion Theory of Elastic Contact
,”
Wear
,
261
(
5
), pp.
600
610
.10.1016/j.wear.2006.01.007
17.
Chang
,
W.
,
Etsion
,
I.
, and
Bogy
,
D.
,
1987
, “
An Elastic–Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.10.1115/1.3261348
18.
Chang
,
W.-R.
,
Etsion
,
I.
, and
Bogy
,
D.
,
1988
, “
Adhesion Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
50
56
.10.1115/1.3261574
19.
Chang
,
W.-R.
,
Etsion
,
I.
, and
Bogy
,
D.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.10.1115/1.3261575
20.
Hamilton
,
G.
,
1983
, “
Explicit Equations for the Stresses Beneath a Sliding Spherical Contact
,”
Proc. Inst. Mech. Eng., Part C
,
197
(
1
), pp.
53
59
.10.1243/PIME_PROC_1983_197_076_02
21.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.10.1115/1.555332
22.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
Adhesion in Elastic–Plastic Spherical Microcontact
,”
J. Colloid Interface Sci.
,
261
(
2
), pp.
372
378
.10.1016/S0021-9797(03)00071-7
23.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic–Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.10.1115/1.1490373
24.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
,
125
(
3
), pp.
499
506
.10.1115/1.1538190
25.
Kogut
,
L.
, and
Etsion
,
I.
,
2004
, “
A Static Friction Model for Elastic–Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
,
126
(
1
), pp.
34
40
.10.1115/1.1609488
26.
Francis
,
H.
,
1977
, “
Application of Spherical Indentation Mechanics to Reversible and Irreversible Contact Between Rough Surfaces
,”
Wear
,
45
(
2
), pp.
221
269
.10.1016/0043-1648(77)90076-X
27.
Tworzydlo
,
W.
,
Cecot
,
W.
,
Oden
,
J.
, and
Yew
,
C.
,
1998
, “
Computational Micro- and Macroscopic Models of Contact and Friction: Formulation, Approach and Applications
,”
Wear
,
220
(
2
), pp.
113
140
.10.1016/S0043-1648(98)00194-X
28.
Longuet-Higgins
,
M.
,
1957
, “
Statistical Properties of an Isotropic Random Surface
,”
Philos. Trans. R. Soc. London Ser. A
,
250
(
975
), pp.
157
174
.10.1098/rsta.1957.0018
29.
Longuet-Higgins
,
M. S.
,
1957
, “
The Statistical Analysis of a Random, Moving Surface
,”
Philos. Trans. R. Soc. London Ser. A
,
249
(
966
), pp.
321
387
.10.1098/rsta.1957.0002
30.
Cartwright
,
D.
, and
Longuet-Higgins
,
M. S.
,
1956
, “
The Statistical Distribution of the Maxima of a Random Function
,”
Proc. R. Soc. London Ser. A
,
237
(
1209
), pp.
212
232
.10.1098/rspa.1956.0173
31.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
,
93
(3), pp.
398
407
.10.1115/1.3451608
32.
Bhushan
,
B.
,
Wyant
,
J. C.
, and
Koliopoulos
,
C. L.
,
1985
, “
Measurement of Surface Topography of Magnetic Tapes by Mirau Interferometry
,”
Appl. Opt.
,
24
(
10
), pp.
1489
1497
.10.1364/AO.24.001489
33.
Whitehouse
,
D. J.
, and
Archard
,
J.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London A
,
316
(
1524
), pp.
97
121
.10.1098/rspa.1970.0068
34.
Pawlus
,
P.
, and
Zelasko
,
W.
,
2012
, “
The Importance of Sampling Interval for Rough Contact Mechanics
,”
Wear
,
276
, pp.
121
129
.10.1016/j.wear.2011.12.015
35.
Zavarise
,
G.
, and
Paggi
,
M.
,
2007
, “
Reliability of Micromechanical Contact Models: A Still Open Issue
,”
Computational Contact Mechanics
,
Springer
,
Vienna, Austria
, pp.
39
82
.10.1007/978-3-211-77298-0_2
36.
Zavarise
,
G.
,
Borri-Brunetto
,
M.
, and
Paggi
,
M.
,
2007
, “
On the Resolution Dependence of Micromechanical Contact Models
,”
Wear
,
262
(
1
), pp.
42
54
.10.1016/j.wear.2006.03.044
37.
Pawar
,
G.
,
Pawlus
,
P.
,
Etsion
,
I.
, and
Raeymaekers
,
B.
,
2013
, “
The Effect of Determining Topography Parameters on Analyzing Elastic Contact Between Isotropic Rough Surfaces
,”
ASME J. Tribol.
,
135
(
1
), p.
011401
.10.1115/1.4007760
38.
Sista
,
B.
, and
Vemaganti
,
K.
,
2014
, “
Estimation of Statistical Parameters of Rough Surfaces Suitable for Developing Micro-Asperity Friction Models
,”
Wear
,
316
(
1–2
), pp.
6
18
.10.1016/j.wear.2014.04.012
39.
Bush
,
A.
,
Gibson
,
R.
, and
Thomas
,
T.
,
1975
, “
The Elastic Contact of a Rough Surface
,”
Wear
,
35
(
1
), pp.
87
111
.10.1016/0043-1648(75)90145-3
40.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
.10.1016/0043-1648(86)90045-1
41.
Greenwood
,
J.
, and
Tripp
,
J.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.10.1243/PIME_PROC_1970_185_069_02
42.
Hertz
,
H.
,
1882
, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
43.
Derjaguin
,
B.
,
Muller
,
V.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.10.1016/0021-9797(75)90018-1
44.
Muller
,
V.
,
Derjaguin
,
B.
, and
Toporov
,
Y. P.
,
1983
, “
On Two Methods of Calculation of the Force of Sticking of an Elastic Sphere to a Rigid Plane
,”
Colloids Surf.
,
7
(
3
), pp.
251
259
.10.1016/0166-6622(83)80051-1
45.
MATLAB,
2010
, Version 7.10.0 (R2010a), The MathWorks Inc., Natick, MA.
46.
Bergström
,
D.
,
2013
, “
Rough Surface Generation and Analysis
,” (last accessed Oct. 31), http://www.mysimlabs.com/surface_generation.html
47.
Garcia
,
N.
, and
Stoll
,
E.
,
1984
, “
Monte Carlo Calculation for Electromagnetic-Wave Scattering From Random Rough Surfaces
,”
Phys. Rev. Lett.
,
52
(
20
), pp.
1798
1801
.10.1103/PhysRevLett.52.1798
48.
Cooper
,
M.
,
Mikic
,
B.
, and
Yovanovich
,
M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.10.1016/0017-9310(69)90011-8
49.
Tajdari
,
M.
, and
Javadi
,
M.
,
2006
, “
A New Experimental Procedure of Evaluating the Friction Coefficient in Elastic and Plastic Regions
,”
J. Mater. Process. Technol.
,
177
(
1
), pp.
247
250
.10.1016/j.jmatprotec.2006.04.033
50.
McFarlane
,
J.
, and
Tabor
,
D.
,
1950
, “
Relation Between Friction and Adhesion
,”
Proc. R. Soc. London Ser. A
,
202
(
1069
), pp.
244
253
.10.1098/rspa.1950.0097
51.
Dunkin
,
J. E.
, and
Kim
,
D. E.
,
1996
, “
Measurement of Static Friction Coefficient Between Flat Surfaces
,”
Wear
,
193
(
2
), pp.
186
192
.10.1016/0043-1648(95)06706-X
You do not currently have access to this content.