The nonlubricated sliding wear of SiC–B4C–Si cermets against a diamond indenter was studied. The cermets containing 2, 5, 10, and 20 wt.% of Si were fabricated by both conventional sintering and spark plasma sintering (SPS) techniques. It has been observed that wear depth, volume of the wear debris, and wear rate increases with increasing applied load for both cases. Minimum wear depth and lowest wear rate was obtained for the cermet containing 10 wt.% Si. Three-body abrasion is the main wear mechanism which results in surface delamination, and formation of grooves and cavities on the damaged surface.

References

1.
Weimer
,
A. W.
,
1997
,
Carbide, Nitride and Boride Materials Synthesis and Processing
, 1st ed.,
Chapmann & Hall
,
London, UK
.
2.
Mussler
,
B. H.
,
Venigalla
,
B. H.
,
Johnson
,
W. C.
,
Rudolph
,
S.
,
Alt
,
C.
,
Burns
,
L.
,
Lathrop
,
D.
,
Mroz
,
C.
,
Russo
,
F. P.
, and
Partis
,
A.
,
2000
, “
Advanced Materials and Powders
,”
Am. Ceram. Soc. Bull.
,
79
(
6
), pp.
45
56
.
3.
Zhang
,
S.
,
1993
, “
Titanium Carbonitride-Based Cermets: Processes and Properties
,”
Mat. Sci. Eng. A
,
163
(
1
), pp.
141
148
.
4.
Prochazka
,
S.
,
1974
, “
Hot Pressed Silicon Carbide
,” U.S. Patent No. US3853566.
5.
Ying
,
T. N.
,
Shen
,
M. C.
,
Wang
,
Y. S.
, and
Hsu
,
S. M.
,
1997
, “
Tribology of Si-Based Ceramics: Wear Mechanisms
,”
Tribol. Trans.
,
40
(
4
), pp.
685
693
.
6.
Ersoy
,
D. A.
,
Mcnallan
,
M. J.
,
Gogotsi
,
Y.
, and
Erdemir
,
A.
,
2000
, “
Tribological Properties of Carbon Coatings Produced by High Temperature Chlorination of Silicon Carbide
,”
Tribol. Trans.
,
43
(
4
), pp.
809
815
.
7.
Vick
,
B.
,
Furey
,
M. J.
, and
Iskandar
,
K.
,
1999
, “
Surface Temperatures Generated by Friction With Ceramic Materials
,”
Tribol. Trans.
,
42
(
4
), pp.
888
894
.
8.
Thevenot
,
F.
,
1990
, “
Boron Carbide—A Comprehensive Review
,”
J. Eur. Ceram. Soc.
,
6
(
4
), pp.
205
225
.
9.
Nelmes
,
R. J.
,
Loveday
,
J. S.
,
Wilson
,
R. M.
,
Marshall
,
W. G.
,
Besson
,
J. M.
,
Klotz
,
S.
,
Hamel
,
G.
,
Aselage
,
T. L.
, and
Hull
,
S.
,
1995
, “
Observation of Inverted-Molecular Compression in Boron Carbide
,”
Phy. Rev. Lett.
,
27
, pp.
2268
2271
.
10.
Lee
,
H.
,
Speyer
,
R. F.
, and
Hackenberger
,
W. S.
,
2002
, “
Sintering of Boron Carbide Heat Treated With Hydrogen
,”
J. Am. Ceram. Soc.
,
85
(
8
), pp.
2131
2133
.
11.
Lee
,
H.
, and
Speyer
,
R. F.
,
2003
, “
Pressureless Sintering of Boron Carbide
,”
J. Am. Ceram. Soc.
,
86
(
9
), pp.
1468
1473
.
12.
Suri
,
A. K.
,
Subramanian
,
C.
,
Sonber
,
J. K.
, and
Murthy
,
T. S. R. Ch.
,
2010
, “
Synthesis and Consolidation of Boron Carbide: A Review
,”
Int. Mater. Rev.
,
55
(
1
), pp.
4
40
.
13.
Deng
,
J.
,
Zhou
,
J.
,
Feng
,
Y.
, and
Ding
,
Z.
,
2002
, “
Microstructure and Mechanical Properties of Hot-Pressed B4C/(W,Ti)C Ceramic Composites
,”
Ceram. Int.
,
28
(
4
), pp.
425
430
.
14.
Sigl
,
L. S.
,
1998
, “
Processing and Mechanical Properties of Boron Carbide Sintered With TiC
,”
J. Eur. Ceram. Soc.
,
18
(
11
), pp.
1521
1529
.
15.
Glasson
,
D. R.
, and
Jones
,
J. A.
,
1969
, “
Formation and Reactivity of Borides, I. Carbides and Silicides. Review and Introduction
,”
J. Appl. Chem.
,
19
(
5
), pp.
125
137
.
16.
Shi
,
X. L.
,
Xu
,
F. M.
,
Tan
,
Y.
, and
Wang
,
L.
,
2012
, “
Mechanical Properties of Hot-Pressed B4C–SiC Composites
,”
Processing and Properties of Advanced Ceramics and Composites
, vol. 220,
N. P.
Bansal
and
J. P.
Singh
, eds.,
Wiley
,
Hoboken, NJ
, pp.
189
196
.
17.
Levin
,
L.
,
Frage
,
N.
, and
Dariel
,
M. P.
,
2000
, “
A Novel Approach for the Preparation of B4C-Basedcermets
,”
Int. J. Refract. Met. Hard Mater.
,
18
(2–3), pp.
131
135
.
18.
Antonov
,
M.
, and
Hussainova
,
I.
,
2010
, “
Cermets Surface Transformation Under Erosive and Abrasive Wear
,”
Tribol. Int.
,
43
(
8
), pp.
1566
1575
.
19.
Klaasen
,
H.
, and
Kubarsepp
,
J.
,
2006
, “
Abrasive Wear Performance of Carbide Composites
,”
Wear
,
261
(5–6), pp.
520
526
.
20.
Yamada
,
S.
,
Hirao
,
K.
,
Yamauch
,
Y.
, and
Kanzaki
,
S.
,
2003
, “
Mechanical and Electrical Properties of B4C–CrB2 Ceramics Fabricated by Liquid Phase Sintering
,”
Ceram. Int.
,
29
(
3
), pp.
299
304
.
21.
Zhang
,
M.
,
Zhang
,
W.
,
Zhang
,
Y.
, and
Gao
,
L.
,
2012
, “
Fabrication, Microstructure and Mechanical Behavior of SiCw–B4C–Si Composite
,”
Mater. Sci. Eng. A
,
552
, pp.
410
414
.
22.
Eber
,
M.
,
1958
, “
Method of Making Ceramic Metal Seal
,” U.S. Patent No. US 2848801 A.
23.
Dong
,
X.
,
Jahanmir
,
S.
, and
Ives
,
L. K.
,
1995
, “
Wear Transition Diagram for Silicon Carbide
,”
Tribol. Int.
,
28
(
8
), pp.
559
572
.
24.
Deng
,
J.
,
Zhang
,
X.
,
Niu
,
P.
,
Liu
,
L.
, and
Wang
,
J.
,
2006
, “
Wear of Ceramic Nozzles by Dry Sand Blasting
,”
Tribol. Int.
,
39
(
3
), pp.
274
280
.
25.
Antonov
,
M.
,
Hussainova
,
I.
,
Veinthal
,
R.
, and
Pirso
,
J.
,
2012
, “
Effect of Temperature and Load on Three-Body Abrasion of Cermets and Steel
,”
Tribol. Int.
,
46
(
1
), pp.
261
268
.
26.
Gee
,
M. G.
,
Matharu
,
C. S.
,
Almond
,
E. A.
, and
Eyre
,
T. S.
,
1990
, “
The Measurement of Sliding Friction and Wear of Ceramics at High Temperature
,”
Wear
,
138
(1–2), pp.
169
187
.
27.
Miyoshi
,
K.
,
Buckley
,
D. H.
, and
Srinivasan
,
M.
,
1983
, “
Tribological Properties of Sintered Polycrystalline and Single-Crystal Silicon Carbide
,”
Am. Ceram. Soc. Bull.
,
62
, pp.
494
500
.
28.
Derby
,
J.
,
MacBet
,
J.
, and
Seshadri
,
S.
,
1985
, “
Tribologicalbehavior of Alpha Silicon Carbide Engine Components
,”
IMechE Conference
, Vol.
65
, pp.
133
137
.
29.
Adewoye
,
O. O.
, and
Page
,
T. F.
,
1981
, “
Frictional Deformation and Fracture in Polycrystalline SiC and Si3N4
,”
Wear
,
70
(
1
), pp.
37
51
.
30.
Larsson
,
P.
,
Axen
,
N.
, and
Hogmark
,
S.
,
1999
, “
Tribofilm Formation on Boron Carbide in Sliding Wear
,”
Wear
,
236
(1–2), pp.
73
80
.
31.
Skopp
,
A.
, and
Woydt
,
M.
,
1995
, “
Ceramic and Ceramic Composite Materials With Improved Friction and Wear Properties
,”
Tribol. Trans.
,
38
(
2
), pp.
233
242
.
32.
Kato
,
K.
, and
Adachi
,
K.
,
2002
, “
Wear of Advanced Ceramics
,”
Wear
,
253
(11–12), pp.
1097
1104
.
33.
Zum Gahr
,
K. H.
,
1987
,
Microstructure and Wear of Materials
,
Elsevier
,
Amsterdam, The Netherlands
.
34.
Tkachenko
,
Y. G.
,
Yulyugin
,
V. K.
,
Bovkun
,
G. A.
, and
Yurchenko
,
D. Z.
,
1984
, “
High-Temperature Friction of Borides of Group IV–VI Metals
,”
Sov. Pow. Metall. Met. Ceram.
,
23
(
1
), pp.
85
88
.
35.
Yang
,
Q.
,
Senda
,
T.
,
Kotani
,
N.
, and
Hirose
,
A.
,
2004
, “
Sliding Wears Behavior and Tribofilm Formation of Ceramics at High Temperatures
,”
Surf. Coat. Technol.
,
184
(2–3), pp.
270
277
.
36.
Daoud
,
A.
, and
Abou El-Khair
,
M. T.
,
2010
, “
Wear and Friction Behavior of Sand Cast Brake Rotor Made of A359–20 Vol.% SiC Particle Composites Sliding Against Automobile Friction Material
,”
Tribol. Int.
,
43
(
3
), pp.
544
553
.
37.
Zorzi
,
J. E.
,
Perottoni
,
C. A.
, and
da Jornada
,
J. A. H.
,
2005
, “
Hardness and Wear Resistance of B4C Ceramics Prepared With Several Additives
,”
Mater. Lett.
,
59
(
23
), pp.
2932
2935
.
38.
Archard
,
J. F.
, and
Hirst
,
W.
,
1956
, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London, Ser. A
,
236
(
1206
), pp.
397
410
.
39.
Zmitrowicz
,
A.
,
2006
, “
Wear Patterns and Laws of Wear—A Review
,”
J. Theor. Appl. Mech.
,
44
(
2
), pp.
219
253
.
40.
Sahani
,
P.
,
Karak
,
S. K.
,
Mishra
,
B.
,
Chakravarty
,
D.
, and
Chaira
,
D.
,
2016
, “
A Comparative Study on SiC–B4C–Si Cermet Prepared by Pressure-Less Sintering and Spark Plasma Sintering Methods
,”
Metall. Mater. Trans. A
,
47
(
6
), pp.
3065
3076
.
41.
Du
,
X.
,
Wang
,
Y.
,
Zhang
,
Z.
,
Zhang
,
F.
,
Wang
,
W.
, and
Fu
,
Z.
,
2015
, “Effects of Silicon Addition on the Microstructure and Properties of B4C–SiC Composite Prepared With Polycarbosilane-Coated B4C Powder,”
J. Mater. Sci. Eng. A
,
636
, pp.
133
137
.
42.
Feng
,
Y.
,
Hou
,
W. Z.
,
Zhang
,
H.
, and
Liu
,
L. J.
,
2010
, “
Densification and Mechanical Properties of Spark Plasma Sintered B4C with Si as a Sintering Aid
,”
J. Am. Ceram. Soc.
,
93
(
10
), pp.
2956
2959
.
43.
Farrokhzad
,
M. A.
,
Saha
,
G. C.
, and
Khan
,
T. I.
,
2013
, “
Wear Performance of Co-Electrodeposited Cermet Coatings
,”
Surf. Coat. Tech.
,
235
, pp.
75
85
.
44.
Widom
,
M.
, and
Huhn
,
W. P.
,
2012
, “
Prediction of Orientational Phase Transition in Boron Carbide
,”
Solid State Sci.
,
14
(11–12), pp.
1648
1652
.
45.
Will
,
G.
, and
Kossobutzki
,
K. H.
,
1976
, “
An X-ray Structure Analysis of Boron Carbide, B13C2
,”
J. Less-Common Met.
,
44
, pp.
87
97
.
46.
Zhang
,
S.
,
Lu
,
W.
,
Wang
,
C.
,
Shen
,
Q.
, and
Zhang
,
L.
,
2012
, “
Synthesis and Characterization of B13C2 Boron Carbide Ceramic by Pulsed Electric Current Sintering
,”
Ceram. Int.
,
38
(
2
), pp.
895
900
.
47.
Okamoto
,
H.
,
1992
, “
Boron-Carbon Phase Diagram
,”
ASM Handbook
,
H.
Baker
, ed.,
ASM International
,
Materials Park, OH
, p.
422
.
48.
Lv
,
Y.
,
Wen
,
G.
, and
Lei
,
T. Q.
,
2006
, “
Friction and Wear Behavior of C-Based Composites In Situ Reinforced With W2B5
,”
J. Eur. Ceram. Soc.
,
26
(
15
), pp.
3477
3486
.
49.
Delgado
,
Y. P.
,
Staia
,
M. H.
,
Malek
,
O.
,
Vleugels
,
J.
, and
De Baets
,
P.
,
2014
, “
Friction and Wear Response of Pulsed Electric Current Sintered TiB2–B4C Ceramic Composite
,”
Wear
,
317
(1–2), pp.
104
110
.
You do not currently have access to this content.