The present study is focused on the performance evaluation of MoS2, H3BO3, and multiwall carbon nanotubes (MWCNT) used as the potential oil additives in base oil for aluminum metal matrix composites (AMMC)–steel (EN31) tribocontact. Al–B4C composite is used for this purpose; based on a set of preliminary investigation under unlubricated and fresh oil lubrication, three different types of AMMCs (Al–SiC, Al–B4C, and Al–SiC–B4C) were used. A pin-on-disk tribometer is used for all the friction and wear tests under operating condition of load 9.8 N and sliding velocity of 0.5 m/s. From the particle-based wet tribology, it is clear that both the additives H3BO3 and MWCNT improve the friction as well as wear behavior for selected composite contacts. Multiwall carbon nanotubes emerged out as superior among all the additives, whereas MoS2 additives show marginal enhancement in frictional performance under given operating conditions. Fractography and morphological study of pin specimens are carried out to identify the underlying friction and wear mechanisms.

References

1.
Tokaji
,
K.
,
2005
, “
Effect of Stress Ratio on Fatigue Behaviour in SiC Particulate‐Reinforced Aluminium Alloy Composite
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
6
), pp.
539
545
.
2.
Kerti
,
I.
, and
Toptan
,
F.
,
2008
, “
Microstructural Variations in Cast B4C-Reinforced Aluminium Matrix Composites (AMCs)
,”
Mater. Lett.
,
62
(
8
), pp.
1215
1218
.
3.
Ipek
,
R.
,
2005
, “
Adhesive Wear Behaviour of B4C and SiC Reinforced 4147 Al Matrix Composites (Al/B4C–Al/SiC)
,”
J. Mater. Process. Technol.
,
162–163
, pp.
71
75
.
4.
Bedir
,
F.
,
2007
, “
Characteristic Properties of Al–Cu–SiCp and Al–Cu–B4Cp Composites Produced by Hot Pressing Method Under Nitrogen Atmosphere
,”
Mater. Des.
,
28
(
4
), pp.
1238
1244
.
5.
Kalkanlı
,
A.
, and
Yılmaz
,
S.
,
2008
, “
Synthesis and Characterization of Aluminum Alloy 7075 Reinforced With Silicon Carbide Particulates
,”
Mater. Des.
,
29
(
4
), pp.
775
780
.
6.
Kerti
,
I.
,
2005
, “
Production of TiC Reinforced-Aluminum Composites With the Addition of Elemental Carbon
,”
Mater. Lett.
,
59
(
29
), pp.
3795
3800
.
7.
Khan
,
K. B.
,
Kutty
,
T.
, and
Surappa
,
M.
,
2006
, “
Hot Hardness and Indentation Creep Study on Al–5% Mg Alloy Matrix–B4C Particle Reinforced Composites
,”
Mater. Sci. Eng.: A
,
427
(
1
), pp.
76
82
.
8.
Zhang
,
H.
,
Ramesh
,
K.
, and
Chin
,
E.
,
2004
, “
High Strain Rate Response of Aluminum 6092/B4C Composites
,”
Mater. Sci. Eng.: A
,
384
(
1
), pp.
26
34
.
9.
Toptan
,
F.
,
Kerti
,
I.
, and
Rocha
,
L. A.
,
2012
, “
Reciprocal Dry Sliding Wear Behaviour of B4Cp Reinforced Aluminium Alloy Matrix Composites
,”
Wear
,
290–291
, pp.
74
85
.
10.
Zhang
,
Z.
,
Chen
,
X.-G.
, and
Charette
,
A.
,
2007
, “
Particle Distribution and Interfacial Reactions of Al–7% Si–10% B4C Die Casting Composite
,”
J. Mater. Sci.
,
42
(
17
), pp.
7354
7362
.
11.
Shorowordi
,
K.
,
Laoui
,
T.
,
Haseeb
,
A.
,
Celis
,
J.-P.
, and
Froyen
,
L.
,
2003
, “
Microstructure and Interface Characteristics of B4C, SiC and Al2O3 Reinforced Al Matrix Composites: A Comparative Study
,”
J. Mater. Process. Technol.
,
142
(
3
), pp.
738
743
.
12.
Toptan
,
F.
,
Kilicarslan
,
A.
,
Karaaslan
,
A.
,
Cigdem
,
M.
, and
Kerti
,
I.
,
2010
, “
Processing and Microstructural Characterisation of AA 1070 and AA 6063 Matrix B4Cp Reinforced Composites
,”
Mater. Des.
,
31
(Suppl. 1), pp.
S87
S91
.
13.
Hemanth
,
J.
,
2005
, “
Tribological Behavior of Cryogenically Treated B4Cp/Al–12%Si Composites
,”
Wear
,
258
(
11
), pp.
1732
1744
.
14.
Shorowordi
,
K.
,
Haseeb
,
A.
, and
Celis
,
J.-P.
,
2006
, “
Tribo-Surface Characteristics of Al–B4C and Al–SiC Composites Worn Under Different Contact Pressures
,”
Wear
,
261
(
5
), pp.
634
641
.
15.
Lashgari
,
H.
,
Sufizadeh
,
A.
, and
Emamy
,
M.
,
2010
, “
The Effect of Strontium on the Microstructure and Wear Properties of A356–10% B4C Cast Composites
,”
Mater. Des.
,
31
(
4
), pp.
2187
2195
.
16.
Lashgari
,
H.
,
Zangeneh
,
S.
,
Shahmir
,
H.
,
Saghafi
,
M.
, and
Emamy
,
M.
,
2010
, “
Heat Treatment Effect on the Microstructure, Tensile Properties and Dry Sliding Wear Behavior of A356–10% B4C Cast Composites
,”
Mater. Des.
,
31
(
9
), pp.
4414
4422
.
17.
Mazahery
,
A.
, and
Shabani
,
M. O.
,
2012
, “
Mechanical Properties of Squeeze-Cast A356 Composites Reinforced With B4C Particulates
,”
J. Mater. Eng. Perform.
,
21
(
2
), pp.
247
252
.
18.
Canakci
,
A.
,
2011
, “
Microstructure and Abrasive Wear Behaviour of B4C Particle Reinforced 2014 Al Matrix Composites
,”
J. Mater. Sci.
,
46
(
8
), pp.
2805
2813
.
19.
Kennedy
,
A.
, and
Brampton
,
B.
,
2001
, “
The Reactive Wetting and Incorporation of B4C Particles Into Molten Aluminium
,”
Scr. Mater.
,
44
(
7
), pp.
1077
1082
.
20.
Bindumadhavan
,
P.
,
Chia
,
T.
,
Chandrasekaran
,
M.
,
Wah
,
H. K.
,
Lam
,
L. N.
, and
Prabhakar
,
O.
,
2001
, “
Effect of Particle-Porosity Clusters on Tribological Behavior of Cast Aluminum Alloy A356-SiCp Metal Matrix Composites
,”
Mater. Sci. Eng.: A
,
315
(
1
), pp.
217
226
.
21.
Bhandare
,
R. G.
, and
Sonawane
,
P. M.
,
2014
, “
Preparation of Aluminium Matrix Composite by Using Stir Casting Method and It's Characterization
,”
Int. J. Curr. Eng. Technol.
,
3
, pp.
148
155
.
22.
Halverson
,
D. C.
,
Pyzik
,
A. J.
,
Aksay
,
I. A.
, and
Snowden
,
W. E.
,
1989
, “
Processing of Boron Carbide‐Aluminum Composites
,”
J. Am. Ceram. Soc.
,
72
(
5
), pp.
775
780
.
23.
Prabu
,
S. B.
,
Karunamoorthy
,
L.
,
Kathiresan
,
S.
, and
Mohan
,
B.
,
2006
, “
Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite
,”
J. Mater. Process. Technol.
,
171
(
2
), pp.
268
273
.
24.
Sharma
,
P.
,
Sharma
,
S.
, and
Khanduja
,
D.
,
2015
, “
A Study on Microstructure of Aluminium Matrix Composites
,”
J. Asian Ceram. Soc.
,
3
(
3
), pp.
240
244
.
25.
Dharmalingam
,
S.
,
Subramanian
,
R.
, and
Vinoth
,
K. S.
,
2010
, “
Analysis of Dry Sliding Friction and Wear Behavior of Aluminum-Alumina Composites Using Taguchi's Techniques
,”
J. Compos. Mater.
,
44
(
18
), pp.
2161
2177
.
26.
Martin
,
J. M.
, and
Ohmae
,
N.
,
2008
,
Nanolubricants
,
Wiley
, Chichester, UK.
27.
Neville
,
A.
,
Morina
,
A.
,
Haque
,
T.
, and
Voong
,
M.
,
2007
, “
Compatibility Between Tribological Surfaces and Lubricant Additives—How Friction and Wear Reduction Can Be Controlled by Surface/Lube Synergies
,”
Tribol. Int.
,
40
(
10–12
), pp.
1680
1695
.
28.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lapsker
,
I.
,
Volovik
,
Y.
,
Nepomnyashchy
,
O.
,
Lvovsky
,
M.
,
Popovitz-Biro
,
R.
,
Feldman
,
Y.
, and
Tenne
,
R.
,
2003
, “
Tribological Properties of WS2 Nanoparticles Under Mixed Lubrication
,”
Wear
,
255
(
7
), pp.
785
793
.
29.
Puzyr
,
A. P.
,
Burov
,
A. E.
,
Selyutin
,
G. E.
,
Voroshilov
,
V. A.
, and
Bondar
,
V. S.
,
2012
, “
Modified Nanodiamonds as Antiwear Additives to Commercial Oils
,”
Tribol. Trans.
,
55
(
1
), pp.
149
154
.
30.
Kalin
,
M.
,
Kogovšek
,
J.
, and
Remškar
,
M.
,
2012
, “
Mechanisms and Improvements in the Friction and Wear Behavior Using MoS2 Nanotubes as Potential Oil Additives
,”
Wear
,
280–281
, pp.
36
45
.
31.
Qu
,
M.
,
Yao
,
Y.
,
He
,
J.
,
Ma
,
X.
,
Liu
,
S.
,
Feng
,
J.
, and
Hou
,
L.
,
2017
, “
Preparation and Tribological Properties of the N‐Containing Heterocyclic Borate Esters and Cu Microparticles as Lubricant Additives in Base Oil
,”
Lubr. Sci.
,
29
(6), pp. 395–409.
32.
Bhowmick
,
H.
,
Majumdar
,
S.
, and
Biswas
,
S.
,
2012
, “
Tribology of Soot Suspension in Hexadecane as Distinguished by the Physical Structure and Chemistry of Soot Particles
,”
J. Phys. D: Appl. Phys.
,
45
(
17
), p.
175302
.
33.
Mu
,
Z.
,
Zhou
,
F.
,
Zhang
,
S.
,
Liang
,
Y.
, and
Liu
,
W.
,
2005
, “
Effect of the Functional Groups in Ionic Liquid Molecules on the Friction and Wear Behavior of Aluminum Alloy in Lubricated Aluminum-on-Steel Contact
,”
Tribol. Int.
,
38
(
8
), pp.
725
731
.
34.
Liu
,
X.
,
Zhou
,
F.
,
Liang
,
Y.
, and
Liu
,
W.
,
2006
, “
Tribological Performance of Phosphonium Based Ionic Liquids for an Aluminum-on-Steel System and Opinions on Lubrication Mechanism
,”
Wear
,
261
(
10
), pp.
1174
1179
.
35.
Mosleh
,
M.
, and
Ghaderi
,
M.
,
2012
, “
Deagglomeration of Transfer Film in Metal Contacts Using Nanolubricants
,”
Tribol. Trans.
,
55
(
1
), pp.
52
58
.
36.
Mosleh
,
M.
, and
Shirvani
,
K. A.
,
2013
, “
In-Situ Nanopolishing by Nanolubricants for Enhanced Elastohydrodynamic Lubrication
,”
Wear
,
301
(
1
), pp.
137
143
.
37.
Xie
,
H.
,
Jiang
,
B.
,
Hu
,
X.
,
Peng
,
C.
,
Guo
,
H.
, and
Pan
,
F.
,
2017
, “
Synergistic Effect of MoS2 and SiO2 Nanoparticles as Lubricant Additives for Magnesium Alloy–Steel Contacts
,”
Nanomaterials
,
7
(
7
), p.
154
.
38.
Hamrock
,
B. J.
,
1994
,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
39.
Guangteng
,
G.
, and
Spikes
,
H. A.
,
1997
, “
An Experimental Study of Film Thickness in the Mixed Lubrication Regime
,”
Tribol. Ser.
,
32
, pp.
159
166
.
40.
Wang
,
Y.
,
Wang
,
Q.
,
Lin
,
C.
, and
Shi
,
F.
,
2006
, “
Development of a Set of Stribeck Curves for Conformal Contacts of Rough Surfaces
,”
Tribol. Trans.
,
49
(4), pp.
526
535
.
41.
Greenberg
,
R.
,
Halperin
,
G.
,
Etsion
,
I.
, and
Tenne
,
R.
,
2004
, “
The Effect of WS2 Nanoparticles on Friction Reduction in Various Lubrication Regimes
,”
Tribol. Lett.
,
17
(2), pp.
179
186
.
42.
Xuan
,
Y.
,
Liu
,
Y.
,
Zhao
,
X. C.
,
Cheng
,
J. W.
,
Li
,
Y. J.
, and
Li
,
J. G.
,
2010
, “
The Investigation of the Tribological Properties of AlOOH and Fe3O4 Nanoparticles as Additives in Liquid Paraffin
,”
Tribology
,
2
, pp.
209
216
.
43.
Gates
,
R. S.
,
Hsu
,
S.
, and
Klaus
,
E. E.
,
1989
, “
Tribochemical Mechanism of Alumina With Water
,”
Tribol. Trans.
,
32
(3), pp.
357
363
.
44.
Rao
,
K. P.
, and
Xie
,
C. L.
,
2006
, “
A Comparative Study on the Performance of Boric Acid With Several Conventional Lubricants in Metal Forming Processes
,”
Tribol. Int.
,
39
(7), pp.
663
668
.
45.
Graham
,
J.
,
Spikes
,
H.
, and
Korcek
,
S.
,
2001
, “
The Friction Reducing Properties of Molybdenum Dialkyldithiocarbamate Additives: Part I—Factors Influencing Friction Reduction
,”
Tribol. Trans.
,
44
(4), pp.
626
636
.
46.
Yamamoto
,
Y.
, and
Gondo
,
S.
,
1989
, “
Friction and Wear Characteristics of Molybdenum Dithiocarbamate and Molybdenum Dithiophosphate
,”
Tribol. Trans.
,
32
(2), pp.
251
257
.
47.
Epshteyn
,
Y.
, and
Risdon
,
T. J.
,
2010
, “
Molybdenum Disulfide in Lubricant Applications—A Review
,”
12th Lubricating Grease Conference
, Goa, India, Jan. 28–30, pp.
1
12
.
48.
Shaw
,
A. H.
,
2015
, “
Physical Properties of Various Conductive Diborides and Their Binaries
,”
Ph.D. dissertation
, Iowa State University, Ames, IA.
You do not currently have access to this content.