Automobile deep groove ball bearings experience severe contact stresses during vehicle maneuvering near the contact with inner and outer races. The accurate prediction of the contact stresses and life estimation of ball bearings has always been challenging, following the complex nature of the contact involved and the resulting rolling contact fatigue (RCF). The present paper performs the finite element (FE) analysis by using a general FE code, abaqus to accurately predict the contact stresses, bearing loads and bearing life in form of ISO 281 (1990) life of an automobile wheel hub ball bearings. Lundberg and Palmgren method is employed for the determination of the bearing life. RomaxDESIGNER, a bearing design software, is also applied to consider the effects of various bearing life adjustment factors, which are used to determine the DIN ISO 281 life. Large amount of bearing failure field data is used to validate the predictions from the study, achieving a very good correlation. Theoretical contact stress calculations based on the Hertz contact theory are also presented for each load case. Finally, an attempt has been made to develop a relation between the contact stress and the bearing life for the hub assembly ball bearings.

References

1.
Pattabhiraman, S., Levesque, G., Kim, N. H., and Arakere, N. K.,
2010
, “
Uncertainty Analysis for Rolling Contact Fatigue Failure Probability of Silicon Nitride Ball Bearings
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2543
2553
.
2.
Farshid
,
S.
,
Behrooz
,
J.
,
Trevor
,
S. S.
,
Nihar
,
R.
, and
Nagaraj
,
K. A.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
3.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
, 4th ed.,
Wiley
, New York, Chap. 7.
4.
Arakere, N. K.,
2016
, “
Gigacycle Rolling Contact Fatigue of Bearing Steels: A Review
,”
Int. J. Fatigue
,
93
(
2
), pp.
238
249
.
5.
Harris
,
T. A.
, and
McCool
,
J. I.
,
1996
, “
On the Accuracy of Rolling Bearing Fatigue Life Prediction
,”
ASME J. Tribol.
,
118
(
2
), pp.
297
310
.
6.
Anup
,
S. P.
,
Nagaraj
,
A.
, and
Ghatu
,
S.
,
2015
, “
Ratcheting-Based Microstructure-Sensitive Modeling of Cyclic Hardening Response of Case-Hardened Bearing Steels Subject to Rolling Contact Fatigue
,”
Int. J. Fatigue
,
73
, pp.
119
131
.
7.
Bhattacharyya
,
A.
,
Pandkar
,
A.
,
Subhash
,
G.
, and
Nagaraj
,
A.
,
2015
, “
Cyclic Constitutive Response and Effective S-N Diagram of M-50 NiL Case Hardened Bearing Steel Subject to Rolling Contact Fatigue
,”
ASME J. Tribol.
,
137
(
4
), p.
041102
.
8.
Romax Technology
,
2016
, “
Romax Designer-Theory of Bearing Life
,” Romax Technology Limited, Nottingham, UK.
9.
ISO
,
2010
, “
Rolling Bearings—Dynamic Load Ratings and Rating Life
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 281:2007
.
10.
Bogdan
,
W.
, and
Agnieszka
,
C.
,
2014
, “
Fatigue Life Prediction of the Radial Roller Bearing With the Correction of Roller Generators
,”
Int. J. Mech. Sci.
,
89
, pp.
299
310
.
11.
Chandra Sekhar
,
R. M.
,
2015
, “
Thermal Stress Analysis of a Ball Bearing by Finite Element Method
,”
Int. J. Adv. Res. Eng. Technol.
,
6
(
11
), pp.
80
90
.
12.
Nathan
,
A. B.
,
Nagaraj
,
K. A.
,
Nelson
,
F.
, and
Vaughn
,
S.
,
2013
, “
Critical Stresses and Strains at the Spall Edge of a Case Hardened Bearing, Due to Ball Impact
,”
Int. J. Fatigue
,
47
, pp.
268
278
.
13.
Tang
,
Z.
, and
Sun
,
J.
,
2011
, “
The Contact Analysis for Deep Groove Ball Bearing Based on ANSYS
,”
Procedia Eng.
,
23
, pp.
423
428
.
14.
Ayao
,
E. A.
,
Karl
,
D.
,
Fabrice
,
B.
,
Philippe
,
C.
, and
Frédéric
,
P.
,
2013
, “
Modeling of the Behavior of a Deep Groove Ball Bearing in Its Housing
,”
J. Appl. Math. Phys.
,
1
, pp.
45
50
.
15.
Ringsberg
,
J. W.
, and
Josefson
,
B. L.
,
2001
, “
Finite Element Analyses of Rolling Contact Fatigue Crack Initiation in Railheads
,”
Proc. Inst. Mech. Eng.
,
215
(
4
), pp.
243
259
.
16.
Ringsberg
,
J. W.
,
Loo
,
M. M.
,
Josefson
,
B. L.
,
Kapoor
,
A.
, and
Beynon
,
J. H.
,
2000
, “
Prediction of Fatigue Crack Initiation for Rolling Contact Fatigue
,”
Int. J. Fatigue
,
22
(
3
), pp.
205
215
.
17.
Shigeo
,
S.
,
2008
, “
Fatigue Limit Concept and Life Prediction Model for Rolling Contact Machine Elements
,”
Tribol. Trans.
,
45
(
1
), pp.
39
46
.
18.
Fukai
,
L.
,
Weiping
,
H.
,
Qingchun
,
M.
,
Zhixin
,
Z.
, and
Fei
,
S.
,
2018
, “
A New Damage-Mechanics-Based Model for Rolling Contact Fatigue Analysis of Cylindrical Roller Bearing
,”
Tribol. Int.
,
120
, pp.
105
114
.
19.
Mir
,
A. G.
,
Yan
,
Z.
, and
Shaoping
,
X.
,
2018
, “
Multiscale Modeling and Simulation of Rolling Contact Fatigue
,”
Int. J. Fatigue
,
108
, pp.
9
17
.
20.
Dassault Systems
,
2017
, “
ABAQUS Theory Manual
,” Dassault Systems, Waltham, MA.
21.
ISO
,
2007
, “
Rolling Bearings—Dynamic Load Ratings and Rating Life
,” 2nd ed., International Standard organization, Geneva, Switzerland, Standard No.
ISO 281:2007
.
22.
NTN Corporation
,
2009
, “
Ball and Roller Bearings
,” CAT No. CAT 2202-IX/E.
23.
Fischer-Cripps
,
A. C.
,
1999
, “
The Hertzian Contact Surface
,”
J. Mater. Sci.
,
34
(
1
), pp.
129
137
.
You do not currently have access to this content.