In this paper, triethanolamine modified graphene oxide (TMGO) has been synthesized by filtering and drying the high-temperature reaction solution of graphene oxide (GO) and triethanolamine. The tribological performance of TMGO and GO in de-ionized water were investigated using a four-ball tribometer. The microscopic morphology of the worn surface was analyzed by optical microscope and scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The results showed that the average friction coefficient (AFC) and wear scar diameter (WSD) of 0.1 wt % TMGO decreased by 21.9% and 6.2% compared with the two values of 0.1 wt % GO, and no corrosion occurred on metal surface. The minimum of the AFC and WSD occurred at 0.3 wt % TMGO. This study provides a new reference for the application of graphene oxide in lubrication.

References

1.
Xu
,
P.
,
Chen
,
Q.
,
Cao
,
L.
,
Tu
,
T.
,
Wan
,
Y.
,
Gao
,
J.
, and
Pu
,
J.
,
2017
, “
Tribological Performance of Pullulan Additives in Water-Based Lubricant
,”
Tribol. Mater. Surf. Interface
,
11
(
2
), pp.
83
87
.
2.
Tomala
,
A.
,
Karpinska
,
A.
,
Werner
,
W. S. M.
,
Olver
,
A.
, and
Störi
,
H.
,
2010
, “
Tribological Properties of Additives for Water-Based Lubricants
,”
Wear
,
269
(
11–12
), pp.
804
810
.
3.
Xu
,
J.
,
Yang
,
S.
,
Niu
,
L.
,
Liu
,
X.
, and
Zhao
,
J.
,
2017
, “
Study on Tribological Properties of Antimony Nanoparticles as Liquid Paraffin Additive
,”
ASME J. Tribol.
,
139
(
5
), p.
051801
.
4.
Kinoshita
,
H.
,
Nishina
,
Y.
,
Alias
,
A. A.
, and
Fujii
,
M.
,
2014
, “
Tribological Properties of Monolayer Graphene Oxide Sheets as Water-Based Lubricant Additives
,”
Carbon
,
66
, pp.
720
723
.
5.
Rasheed
,
A. K.
,
Khalid
,
M.
,
Rashmi
,
W.
,
Gupta
,
T. C. S. M.
, and
Chan
,
A.
,
2016
, “
Graphene Based Nanofluids and Nanolubricants—Review of Recent Developments
,”
Renewable Sustainable Energy Rev.
,
63
, pp.
346
362
.
6.
Kong
,
L.
,
Sun
,
J.
, and
Bao
,
Y.
,
2017
, “
Preparation, Characterization and Tribological Mechanism of Nanofluids
,”
RSC Adv.
,
7
(
21
), pp.
12599
12609
.
7.
Zheng
,
D.
,
Cai
,
Z.
,
Shen
,
M.
,
Li
,
Z.
, and
Zhu
,
M.
,
2016
, “
Investigation of the Tribology Behaviour of the Graphene Nanosheets as Oil Additives on Textured Alloy Cast Iron Surface
,”
Appl. Surf. Sci.
,
387
, pp.
66
75
.
8.
Zhang
,
L.
,
Pu
,
J.
,
Wang
,
L.
, and
Xue
,
Q.
,
2015
, “
Synergistic Effect of Hybrid Carbon Nanotube−Graphene Oxide as Nanoadditive Enhancing the Frictional Properties of Ionic Liquids in High Vacuum
,”
ACS Appl. Mater. Interfaces
,
7
(
16
), pp.
8592
8600
.
9.
Zhao
,
W.
,
Zeng
,
Z.
,
Peng
,
S.
,
Wu
,
X.
,
Xue
,
Q.
, and
Chen
,
J.
,
2013
, “
Fabrication and Investigation the Microtribological Behaviors of Ionic Liquid–Graphene Composite Films
,”
Tribol. Trans.
,
56
(
3
), pp.
480
487
.
10.
Bai
,
L.
,
Srikanth
,
N.
,
Zhao
,
B.
,
Liu
,
B.
,
Liu
,
Z.
, and
Zhou
,
K.
,
2016
, “
Lubrication Mechanisms of Graphene for DLC Films Scratched by a Diamond Tip
,”
J. Phys. D
,
49
(
48
), pp.
485302
485312
.
11.
Ota
,
J.
,
Hait
,
S. K.
,
Sastry
,
M. I. S.
, and
Ramakumar
,
S. S. V.
,
2015
, “
Graphene Dispersion in Hydrocarbon Medium and Its Application in Lubricant Technology
,”
RSC Adv.
,
5
(
66
), pp.
53326
53332
.
12.
Zhang
,
W.
,
Zhou
,
M.
,
Zhu
,
H.
,
Tian
,
Y.
,
Wang
,
K.
,
Wei
,
J.
,
Ji
,
F.
,
Li
,
X.
,
Li
,
Z.
,
Zhang
,
P.
, and
Wu
,
D.
,
2011
, “
Tribological Properties of Oleic Acid-Modified Graphene as Lubricant Oil Additives
,”
J. Phys. D
,
44
(
20
), pp.
205303
205306
.
13.
Zhao
,
J.
,
Li
,
Y.
,
Wang
,
Y.
,
Mao
,
J.
,
He
,
Y.
, and
Luo
,
J.
,
2017
, “
Mild Thermal Reduction of Graphene Oxide as a Lubrication Additive for Friction and Wear Reduction
,”
RSC Adv.
,
7
(
3
), pp.
1766
1770
.
14.
Alias
,
A. A.
,
Kinoshita
,
H.
,
Nishina
,
Y.
, and
Fujii
,
M.
,
2016
, “
Dependence of pH Level on Tribological Effect of Graphene Oxide as an Additive in Water Lubrication
,”
Int. J. Automot. Mech. Eng.
,
13
(
1
), pp.
3150
3156
.
15.
Jiang
,
G.
,
Lin
,
Z.
,
Chen
,
C.
,
Zhu
,
L.
,
Chang
,
Q.
,
Wang
,
N.
,
Wei
,
W.
, and
Tang
,
H.
,
2011
, “
TiO2 Nanoparticles Assembled on Graphene Oxide Nanosheets With High Photocatalytic Activity for Removal of Pollutants
,”
Carbon
,
49
(
8
), pp.
2693
2701
.
16.
Singh
,
V. K.
,
Elomaa
,
O.
,
Johansson
,
L.
,
Hannula
,
S.
, and
Koskinen
,
J.
,
2014
, “
Lubricating Properties of Silica/Graphene Oxide Composite Powders
,”
Carbon
,
79
, pp.
227
235
.
17.
Lai
,
L.
,
Chen
,
L.
,
Zhan
,
D.
,
Sun
,
L.
,
Liu
,
J.
,
Lim
,
S. H.
,
Poh
,
C. K.
,
Shen
,
Z.
, and
Lin
,
J.
,
2011
, “
One-Step Synthesis of NH2-Graphene From In Situ Graphene-Oxide Reduction and Its Improved Electrochemical Properties
,”
Carbon
,
49
(
10
), pp.
3250
3257
.
You do not currently have access to this content.