Abstract
The present work aims to study the abrasive wear of kenaf/high-density polyethylene (HDPE) composites with 20% weight fraction reinforcement of the kenaf fiber. A unique technique of the microwave-assisted compression molding (MACM) was used to fabricate the composites. The pin-on-disc setup was used for two-body abrasive wear, in which the kenaf/HDPE composite acts as a pin and the abrasive paper (P100) acts as a counter surface. Two-body abrasive wear tests were conducted for HDPE and kenaf/HDPE composites at normal loads of 10 N, 20 N, and 30 N and the sliding speed of 1 m/s, 2 m/s, and 3 m/s within 100 m of sliding distance. Tribofilm formation was observed at higher values of load and speed, which helps in reducing the wear-rate of the composites. Wear mechanism of the kenaf/HDPE composite is discussed in detail and supported with scanning electron microscope (SEM) fractography.