Abstract

Stress distributions and plastic deformation zones are factors directly influencing the fatigue life of components under cyclic contact. An effective approach to improving the resistance of a steel to contact fatigue failure is surface hardening, which builds gradient yield strength from the surface of the steel to the bulk. When using the distortion energy theory as the criterion to identify failure initiation for a case-hardened steel, contact yield starts in the subsurface wherever the von Mises stress reaches the local material strength, rather than at the point of the maximum von Mises stress in the subsurface. If the yield strength changes from the surface to the bulk following a straight line, the location of yield initiation should occur at the tangency of the strength line and the von Mises stress curve. Analyses on circular, rectangular, and elliptical contacts are presented to reveal the locations of contact yield initiation for such case-hardened steels subjected to rolling contact stresses, for which the influence of friction can be ignored. A group of formulas relating contact yield initiation, in terms of the critical pressure, location of the first yield, and plasticity index (transition to plasticity) to case-hardening parameters, such as the case slope, the minimum case depth, and surface and bulk strengths, are derived to facilitate contact element designs using case-hardened materials. The results are applied to examine the rolling contact behaviors of several case-hardened steels, and the data correlation suggests that their rolling contact fatigue lives are related to a nondimensional case-hardening slope besides external loading.

References

References
1.
Ablaev
,
A. A.
,
Birger
,
E. M.
,
Divinskii
,
V. V.
,
Drozdov
,
S. G.
, and
Medvedovskaya
,
L. A.
,
1989
, “
Laser Hardening of Repaired A-41 Engine Crankshafts
,”
Met. Sci. Heat Treat.
,
31
(
1
), pp.
12
15
.
2.
Camoletto
,
A.
,
Molino
,
G.
, and
Talentino
,
S.
,
1991
, “
Laser Hardening of Turbine Blades
,”
Mater. Manuf. Processes
,
6
(
1
), pp.
53
65
. 10.1080/10426919108934735
3.
Davis
,
J. R.
,
2002
,
Surface Hardening of Steels: Understanding the Basics
,
ASM International
,
Materials Park, OH
.
4.
Dossett
,
J.
, and
Totten
,
G. E.
,
2013
, “
Introduction to Surface Hardening of Steels
,”
ASM Handbook
,
4
, pp.
389
398
.
5.
Rosado
,
L.
,
Forster
,
N. H.
,
Thompson
,
K. L.
, and
Cooke
,
J. W.
,
2009
, “
Rolling Contact Fatigue Life and Spall Propagation of AISI M50, M50NiL, and AISI 52100, Part I: Experimental Results
,”
Tribol. Trans.
,
53
(
1
), pp.
29
41
. 10.1080/10402000903226366
6.
Arakere
,
N. K.
,
Branch
,
N.
,
Levesque
,
G.
,
Svendsen
,
V.
, and
Forster
,
N. H.
,
2009
, “
Rolling Contact Fatigue Life and Spall Propagation of AISI M50, M50NiL, and AISI 52100, Part II: Stress Modeling
,”
Tribol. Trans.
,
53
(
1
), pp.
42
51
. 10.1080/10402000903226325
7.
Forster
,
N. H.
,
Rosado
,
L.
,
Ogden
,
W. P.
, and
Trivedi
,
H. K.
,
2009
, “
Rolling Contact Fatigue Life and Spall Propagation Characteristics of AISI M50, M50 NiL, and AISI 52100, Part III: Metallurgical Examination
,”
Tribol. Trans.
,
53
(
1
), pp.
52
59
. 10.1080/10402000903226317
8.
Londhe
,
N. D.
,
Arakere
,
N. K.
, and
Subhash
,
G.
,
2018
, “
Extended Hertz Theory of Contact Mechanics for Case-Hardened Steels With Implications for Bearing Fatigue Life
,”
ASME J. Tribol.
,
140
(
2
), p.
021401
. 10.1115/1.4037359
9.
Guetard
,
G.
,
Toda-Caraballo
,
I.
, and
Rivera-Diaz-Del-Castillo
,
P. E. J.
,
2016
, “
Damage Evolution Around Primary Carbides Under Rolling Contact Fatigue in VIM–VAR M50
,”
Int. J. Fatigue
,
91
(
1
), pp.
59
67
. 10.1016/j.ijfatigue.2016.05.026
10.
Rydel
,
J. J.
,
Toda-Caraballo
,
I.
,
Guetard
,
G.
, and
Rivera-Díaz-del-Castillo
,
P. E. J.
,
2018
, “
Understanding the Factors Controlling Rolling Contact Fatigue Damage in VIM-VAR M50 Steel
,”
Int. J. Fatigue
,
108
, pp.
68
78
. 10.1016/j.ijfatigue.2017.10.018
11.
Sharma
,
V. K.
,
Walter
,
G. H.
, and
Breen
,
D. H.
,
1979
, “
An Analytical Approach for Establishing Case Depth Requirements in Carburized Gears
,”
J. Heat Treating
,
1
(
1
), pp.
48
57
. 10.1007/BF02833209
12.
Elkholy
,
A.
,
1983
, “
Case Depth Requirements in Carburized Gears
,”
Wear
,
88
(
2
), pp.
233
244
. 10.1016/S0043-1648(83)80011-8
13.
Genel
,
K.
, and
Demirkol
,
M.
,
1999
, “
Effect of Case Depth on Fatigue Performance of AISI 8620 Carburized Steel
,”
Int. J. Fatigue
,
21
(
2
), pp.
207
212
. 10.1016/S0142-1123(98)00061-9
14.
Sun
,
Y.
, and
Bell
,
T.
,
2002
, “
Dry Sliding Wear Resistance of Low Temperature Plasma Carburised Astenitic Stainless Steel
,”
Wear
,
253
(
5–6
), pp.
689
693
. 10.1016/S0043-1648(02)00170-9
15.
Wang
,
W. J.
,
Guo
,
J.
,
Liu
,
Q. Y.
, and
Zhu
,
M. H.
,
2014
, “
Effect of Laser Quenching on Wear and Damage of Heavy-Haul Wheel/Rail Materials
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
1
), pp.
114
122
. 10.1177/1350650113498327
16.
Tunna
,
J.
,
Sinclair
,
J.
, and
Perez
,
J.
,
2007
, “
A Review of Wheel Wear and Rolling Contact Fatigue
,”
Proc. Inst. Mech. Eng., Part F
,
221
(
2
), pp.
271
289
. 10.1243/0954409JRRT72
17.
Tyfour
,
W. R.
, and
Beynon
,
J. H.
,
1994
, “
The Effect of Rolling Direction Reversal on Fatigue Crack Morphology and Propagation
,”
Tribol. Int.
,
27
(
4
), pp.
273
282
. 10.1016/0301-679X(94)90007-8
18.
Daves
,
W.
,
Kubin
,
W.
,
Scheriau
,
S.
, and
Pletz
,
M.
,
2016
, “
A Finite Element Model to Simulate the Physical Mechanisms of Wear and Crack Initiation in Wheel/Rail Contact
,”
Wear
,
366
, pp.
78
83
. 10.1016/j.wear.2016.05.027
19.
Zhao
,
X. J.
,
Guo
,
J.
,
Liu
,
Q. Y.
,
Butini
,
E.
,
Marini
,
L.
,
Meli
,
E.
,
Rindi
,
A.
, and
Wang
,
W. J.
,
2018
, “
Effect of Spherical Dents on Microstructure Evolution and Rolling Contact Fatigue of Wheel/Rail Materials
,”
Tribol. Int.
,
127
, pp.
520
532
. 10.1016/j.triboint.2018.07.001
20.
Izciler
,
M.
, and
Tabur
,
M.
,
2006
, “
Abrasive Wear Behavior of Different Case Depth Gas Carburized AISI 8620 Gear Steel
,”
Wear
,
260
(
1–2
), pp.
90
98
. 10.1016/j.wear.2004.12.034
21.
Tobie
,
T.
,
Oster
,
P.
, and
Höhn
,
B. R.
,
2002
, “
Case Depth and Load Capacity of Case-Carburized Gears
,”
Gear Technology (USA)
,
19
(
2
), pp.
31
38
.
22.
Höhn
,
B. R.
,
Oster
,
P.
, and
Tobie
,
T.
,
2003
, “
Systematic Investigations on the Influence of Case Depth on the Pitting and Bending Strength of Case Carburized Gears
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Sept. 2–6
,
American Society of Mechanical Engineers
,
New York
, pp.
111
119
.
23.
Zhang
,
S. G.
,
Wang
,
W. Z.
,
Zhang
,
H. B.
, and
Zhao
,
Z. Q.
,
2016
, “
The Effect of Hardness Distribution by Carburizing on the Elastic–Plastic Contact Performance
,”
Tribol. Int.
,
100
, pp.
24
34
. 10.1016/j.triboint.2015.11.004
24.
Greenwood
,
J. A.
, and
Williamson
,
J. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lon. A.
,
295
(
1442
), pp.
300
319
. 10.1098/rspa.1966.0242
25.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
. 10.1080/10402000308982641
26.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
. 10.1115/1.1866166
27.
Chen
,
W. W.
,
Wang
,
Q. J.
,
Wang
,
F.
,
Keer
,
L. M.
, and
Cao
,
J.
,
2008
, “
Three-Dimensional Repeated Elasto-Plastic Point Contacts, Rolling, and Sliding
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021021
. 10.1115/1.2755171
28.
Zhu
,
D.
,
Ren
,
N.
, and
Wang
,
Q. J.
,
2009
, “
Pitting Life Prediction Based on a 3D Line Contact Mixed EHL Analysis and Subsurface von Mises Stress Calculation
,”
ASME J. Tribol.
,
131
(
4
), p.
041501
. 10.1115/1.3195040
29.
Ioannides
,
E.
, and
Harris
,
T. A.
,
1985
, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
,
107
(
3
), pp.
367
377
. 10.1115/1.3261081
30.
Zaretsky
,
E. Y.
,
1987
, “
Fatigue Criterion to System Design, Life, and Reliability
,”
J. Propul. Power
,
3
(
1
), pp.
76
83
. 10.2514/3.22955
31.
Jackson
,
R. L.
, and
Green
,
I.
,
2011
, “
On the Modeling of Elastic Contact Between Rough Surfaces
,”
Tribol. Trans.
,
54
(
2
), pp.
300
314
. 10.1080/10402004.2010.542277
32.
Xie
,
L.
,
Palmer
,
D.
,
Otto
,
F.
,
Wang
,
Z.
, and
Jane Wang
,
Q.
,
2015
, “
Effect of Surface Hardening Technique and Case Depth on Rolling Contact Fatigue Behavior of Alloy Steels
,”
Tribol. Trans.
,
58
(
2
), pp.
215
224
. 10.1080/10402004.2014.960957
33.
Gupta
,
P. K.
, and
Zaretsky
,
E. V.
,
2018
, “
New Stress-Based Fatigue Life Models for Ball and Roller Bearings
,”
Tribol. Trans.
,
61
(
2
), pp.
304
324
. 10.1080/10402004.2017.1319524
34.
Lundberg
,
G.
, and
Palmgren
,
A.
,
1952
,
Dynamic Capacity of Roller Bearings
,
Generalstabens litografiska anstalts förlag
,
Stockholm
.
35.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press, Cambridge
,
England
.
36.
Tabor
,
D.
,
1951
,
The Hardness of Metals
,
Clarendon
,
Oxford
.
37.
Tabor
,
D.
,
1970
, “
The Hardness of Solids
,”
Rev. Phys. Technol.
,
1
(
3
), pp.
145
179
. 10.1088/0034-6683/1/3/I01
38.
American Iron and Steel Institute
.
Bar Steel Fatigue Database
, http://barsteelfatigue.autosteel.org/, Accessed on July 8, 2014.
39.
Klecka
,
M. A.
,
Subhash
,
G.
, and
Arakere
,
N. K.
,
2013
, “
Microstructure–Property Relationships in M50-NiL and P675 Case-Hardened Bearing Steels
,”
Tribol. Trans.
,
56
(
6
), pp.
1046
1059
. 10.1080/10402004.2013.818393
40.
Green
,
I.
,
2005
, “
Poisson Ratio Effects and Critical Values in Spherical and Cylindrical Hertzian Contacts
,”
Appl. Mech. Eng.
,
10
(
3
), p.
451
.
41.
Wang
,
Q. J.
, and
Zhu
,
D.
,
2019
,
Interfacial Mechanics, Theories and Methods for Contact and Lubrication
,
CRC Press
,
Boca Raton, FL
.
42.
Wang
,
Z.
,
Jin
,
X.
,
Zhou
,
Q.
,
Ai
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2013
, “
An Efficient Numerical Method With a Parallel Computational Strategy for Solving Arbitrarily Shaped Inclusions in Elastoplastic Contact Problems
,”
ASME J. Tribol.
,
135
(
3
), p.
031401
. 10.1115/1.4023948
43.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
. 10.1016/S0043-1648(00)00427-0
44.
Liu
,
S.
, and
Wang
,
Q.
,
2002
, “
Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
,
124
(
1
), pp.
36
45
. 10.1115/1.1401017
You do not currently have access to this content.