Abstract

The dynamic behavior of rock faults reflects the response of the shape and composition of the fault to the applied loading and environmental conditions. The interaction between the fault properties and the loading system is controlled by multiple variables that act simultaneously to generate an inherently complex behavior. Integrating multiple variables can illuminate the controlling mechanisms of fault dynamic, and five examples of such integration are evaluated here, including power-density, which quantifies the energy dissipation rate on the slipping fault, PV-factor, which evaluates the damage potential, impulse-density, which combines effect of slip-velocity and slip-duration, the weakening distance of transition to thermal weakening, and the kinematic-load, which integrates slip-velocity and slip-distance. The examination of relevant experimental observations indicates that these variables provide effective quantification tools for fault dynamic strength, fault wear, fault damage, melting, and mineralogical transformation.

References

References
1.
DiToro
,
G.
,
Han
,
R.
,
Hirose
,
T.
,
De Paola
,
N.
,
Nielsen
,
S.
,
Mizoguchi
,
K.
,
Ferri
,
F.
,
Cocco
,
M.
, and
Shimamoto
,
T.
,
2011
, “
Fault Lubrication During Earthquakes
,”
Nature
,
471
(
7339
), pp.
494
498
. 10.1038/nature09838
2.
Niemeijer
,
A.
,
DiToro
,
G.
,
Nielsen
,
S.
, and
Di Felice
,
F.
,
2011
, “
Frictional Melting of Gabbro Under Extreme Experimental Conditions of Normal Stress, Acceleration, and Sliding Velocity
,”
J. Geophys. Res.
,
116
(
B7
), p.
B07404
. 10.1029/2010JB008181
3.
Dieterich
,
J. H.
,
1979
, “
Modeling of Rock Friction: 1. Experimental Results and Constitutive Equations
,”
J. Geophy. Res.
,
84
(
B5
), pp.
2161
2168
. 10.1029/JB084iB05p02161
4.
Scholz
,
C. H.
,
1998
, “
Earthquakes and Friction Laws
,”
Nature
,
391
(
6662
), pp.
37
42
. 10.1038/34097
5.
Hirose
,
T.
, and
Shimamoto
,
T.
,
2005
, “
Growth of Molten Zone as a Mechanism of Slip Weakening of Simulated Faults in Gabbro During Frictional Melting
,”
J. Geophy. Res.
,
110
(
B5
). 10.1029/2004JB003207
6.
Rice
,
J. R.
,
2006
, “
Heating and Weakening of Faults During Earthquake Slip
,”
J. Geophys. Res.
,
111
(
B5
), p.
B05311
. 10.1029/2005JB004006
7.
Boneh
,
Y.
,
Sagy
,
A.
, and
Reches
,
Z.
,
2013
, “
Frictional Strength and Wear-Rate of Carbonate Faults During High-Velocity, Steady-State Sliding
,”
Earth Planet. Sci. Let.
,
381
(
1
), pp.
127
137
. 10.1016/j.epsl.2013.08.050
8.
Vingsbo
,
O.
, and
Söderberg
,
S.
,
1988
, “
On Fretting Maps
,”
Wear
,
126
(
2
), pp.
131
147
. 10.1016/0043-1648(88)90134-2
9.
Wang
,
D. Z.
,
Peng
,
H. X.
,
Liu
,
J.
, and
Yao
,
C. K.
,
1995
, “
Wear Behaviour and Microstructural Changes of SiCw-Al Composite Under Unlubricated Sliding Friction
,”
Wear
,
184
(
2
), pp.
187
192
. 10.1016/0043-1648(94)06577-2
10.
Boneh
,
Y.
, and
Reches
,
Z.
,
2018
, “
Geotribology-Friction, Wear, and Lubrication of Faults
,”
Tectonophysics
,
733
(
1
), pp.
171
181
. 10.1016/j.tecto.2017.11.022
11.
Chen
,
X.
,
Madden
,
A. S. E.
, and
Reches
,
Z.
,
2017
, “
Friction Evolution of Granitic Faults: Heating Controlled Transition From Powder Lubrication to Frictional Melt
,”
J. Geoph. Res.
,
122
(
11
), pp.
9275
9289
. 10.1002/2017JB014462
12.
Chen
,
X.
,
Madden
,
A. S. E.
, and
Reches
,
Z.
,
2017
, “
The Frictional Strength of Talc Gouge in High-Velocity Shear Experiments
,”
J. Geophy. Res.
,
122
(
5
), pp.
3661
3676
. 10.1002/2016JB013676
13.
Liao
,
Z.
,
Chang
,
J. C.
, and
Reches
,
Z.
,
2014
, “
Fault Strength Evolution During High Velocity Friction Experiments with Slip-Pulse and Constant-Velocity Loading
,”
Earth Planet. Sci. Let.
,
406
(
1
), pp.
93
101
. 10.1016/j.epsl.2014.09.010
14.
Reches
,
Z.
, and
Lockner
,
D. A.
,
2010
, “
Fault Weakening and Earthquake Instability by Powder Lubrication
,”
Nature
,
467
(
7314
), pp.
452
455
. 10.1038/nature09348
15.
Siman-Tov
,
S.
,
Aharonov
,
E.
,
Boneh
,
Y.
, and
Reches
,
Z.
,
2015
, “
Fault Mirrors Along Carbonate Faults: Formation and Destruction During Shear Experiments
,”
Earth Planet. Sci. Let.
,
430
(
1
), pp.
367
376
. 10.1016/j.epsl.2015.08.031
16.
Siman-Tov
,
S.
,
Aharonov
,
E.
,
Sagy
,
A.
, and
Emmanuel
,
S.
,
2013
, “
Nanograins Form Carbonate Fault Mirrors
,”
Geology
,
41
(
6
), pp.
703
706
. 10.1130/G34087.1
17.
Ramalho
,
A.
, and
Miranda
,
J. C.
,
2006
, “
The Relationship Between Wear and Dissipated Energy in Sliding Systems
,”
Wear
,
260
(
4-5
), pp.
361
367
. 10.1016/j.wear.2005.02.121
18.
Williams
,
J. A.
,
2005
, “
Wear and Wear Particles—Some Fundamentals
,”
Tribol. Int.
,
38
(
10
), pp.
863
870
. 10.1016/j.triboint.2005.03.007
19.
Wang
,
Y. A.
,
Li
,
J. X.
,
Yan
,
Y.
, and
Qiao
,
L. J.
,
2012
, “
Effect of PV Factor on Sliding Friction and Wear of Copper-Impregnated Metallized Carbon
,”
Wear
,
289
(
1
), pp.
119
123
. 10.1016/j.wear.2012.04.006
20.
Reches
,
Z.
,
Zu
,
X.
, and
Carpenter
,
B. M.
,
2019
, “
Energy-flux Control of the Steady-State, Creep, and Dynamic Slip Modes of Faults
,”
Sci. Rep.
,
9
(
1
), p.
10627
. 10.1038/s41598-019-46922-1
21.
Wang
,
W.
, and
Scholz
,
C. H.
,
1994
, “
Wear Processes During Frictional Sliding of Rock: A Theoretical and Experimental Study
,”
J. Geophy. Res.
,
99
(
B4
), pp.
6789
6799
. 10.1029/93JB02875
22.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. App. Phy.
,
24
(
8
), pp.
981
988
. 10.1063/1.1721448
23.
Hirose
,
T.
,
Mizoguchi
,
K.
, and
Shimamoto
,
T.
,
2012
, “
Wear Processes in Rocks at Slow to High Slip Rates
,”
J. Struct. Geol.
,
38
(
SI
), pp.
102
116
. 10.1016/j.jsg.2011.12.007
24.
Engelder
,
J. T.
, and
Scholz
,
C. H.
,
1976
, “
The Role of Asperity Indentation and Ploughing in Rock Friction—II: Influence of Relative Hardness and Normal Load
,”
Int. J. Rock Mech. Mining Sci. Geomech. Abs.
,
13
(
5
), pp.
155
163
. 10.1016/0148-9062(76)90820-2
25.
Zhang
,
Q. B.
, and
Zhao
,
J.
,
2013
, “
Effect of Loading Rate on Fracture Toughness and Failure Micromechanisms in Marble
,”
Eng. Frac. Mech.
,
102
(
1
), pp.
288
309
. 10.1016/j.engfracmech.2013.02.009
26.
Zhang
,
Z. X.
,
Kou
,
S. Q.
,
Yu
,
J.
,
Yu
,
Y.
,
Jiang
,
L. G.
, and
Lindqvist
,
P. A.
,
1999
, “
Effects of Loading Rate on Rock Fracture
,”
Int. J. Rock Mech. Mining Sci.
,
36
(
5
), pp.
597
611
. 10.1016/S0148-9062(99)00031-5
27.
Chen
,
X.
,
Morgan
,
C. B.
,
Carpenter
,
B. M.
, and
Reches
,
Z.
,
2019
, “
Weakening Mechanisms of Alpine Fault Gouge in High-Velocity Shear Experiments
,”
J. Geophy. Res.
,
124
(
7
), pp.
7413
7428
. 10.1029/2019JB017383
28.
Tinti
,
E.
,
Fukuyama
,
E.
,
Piatanesi
,
A.
, and
Cocco
,
M.
,
2005
, “
A Kinematic Source-Time Function Compatible with Earthquake Dynamics
,”
Bull. Seism. Soc. Am.
,
95
(
4
), pp.
1211
1223
. 10.1785/0120040177
29.
Shimamoto
,
T.
,
1994
, “
Is Frictional Melting Equilibrium Melting, or non-Equilibrium Melting?
J. Tectonic Res. Group Japan
,
39
(
1
), pp.
79
84
.
30.
Spray
,
J. G.
,
1993
, “
Viscosity Determinations of Some Frictionally Generated Silicate Melts: Implications for Fault Zone Rheology at High Strain Rates
,”
J. Geophy. Res.
,
98
(
B5
), pp.
8053
8068
. 10.1029/93JB00020
31.
Hung
,
C. C.
,
Kuo
,
L. W.
,
Spagnuolo
,
E.
,
Wang
,
C. C.
,
DiToro
,
G.
,
Wu
,
W. J.
,
Dong
,
J. J.
,
Lin
,
W.
,
Sheu
,
H. S.
,
Yeh
,
E. C.
, and
Hsieh
,
P. S.
,
2019
, “
Grain Fragmentation and Frictional Melting During Initial Experimental Deformation and Implications for Seismic Slip at Shallow Depths
,”
J. Geophy. Res.
,
124
(
11
), pp.
11150
11169
. 10.1029/2019JB017905
32.
Brune
,
J. N.
,
1970
, “
Tectonic Stress and the Spectra of Seismic Shear Waves From Earthquakes
,”
J. Geophy. Res.
,
75
(
26
), pp.
4997
5009
. 10.1029/JB075i026p04997
33.
Cocco
,
M.
,
Spudich
,
P.
, and
Tinti
,
E.
,
2006
, “
On the Mechanical Work Absorbed on Faults During Earthquake Ruptures
,” Radiated Energy and the Physics of Earthquakes Faulting, AGU Monograph 170.
34.
Brace
,
W. F.
, and
Byerlee
,
J. D.
,
1966
, “
Stick–Slip as a Mechanism for Earthquakes
,”
Science
,
153
(
3739
), pp.
990
992
. 10.1126/science.153.3739.990
35.
Svetlizky
,
I.
, and
Fineberg
,
J.
,
2014
, “
Classical Shear Cracks Drive the Onset of Dry Frictional Motion
,”
Nature
,
509
(
7499
), pp.
205
208
. 10.1038/nature13202
36.
Freund
,
L. B.
,
1998
,
Dynamic Fracture Mechanics
,
Cambridge University Press
,
New York, NY
, p.
559
.
You do not currently have access to this content.