Abstract

The core contributions of Part I (1) present a computational fluid dynamics (CFD)-based approach for tilting pad journal bearing (TPJB) modeling including thermo-elasto hydrodynamic (TEHD) effects with multi-mode pad flexibility, (2) validate the model by comparison with experimental work, and (3) investigate the limitations of the conventional approach by contrasting it with the new approach. The modeling technique is advanced from the author’s previous work by including pad flexibility. The results demonstrate that the conventional approach of disregarding the three-dimensional flow physics between pads (BP) can generate significantly different pressure, temperature, heat flux, dynamic viscosity, and film thickness distributions, relative to the high-fidelity CFD model. The uncertainty of the assumed mixing coefficient (MC) may be a serious weakness when using a conventional, TPJB Reynolds model, leading to prediction errors in static and dynamic performance. The advanced mixing prediction method for “BP” thermal flow developed in Part I will be implemented with machine learning techniques in Part II to provide a means to enhance the accuracy of conventional Reynolds based TPJB models.

References

References
1.
Lund
,
J.
,
1964
, “
Spring and Damping Coefficients for the Tilting-Pad Journal Bearing
,”
ASLE Trans.
,
7
(
4
), pp.
342
352
. 10.1080/05698196408972064
2.
Tieu
,
A.
,
1973
, “
Oil-Film Temperature Distribution in an Infinitely Wide Slider Bearing: An Application of the Finite-Element Method
,”
J. Mech. Eng. Sci.
,
15
(
4
), pp.
311
320
. 10.1243/JMES_JOUR_1973_015_053_02
3.
Ettles
,
C. M. M.
,
1980
, “
The Analysis and Performance of Pivoted Pad Journal Bearings Considering Thermal and Elastic Effects
,”
ASME J. Lubr. Tech.
,
102
(
2
), pp.
182
191
. 10.1115/1.3251465
4.
Kirk
,
R.
, and
Reedy
,
S.
,
1988
, “
Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
110
(
2
), pp.
165
171
. 10.1115/1.3269494
5.
Knight
,
J. D.
, and
Barrett
,
L. E.
,
1988
, “
Analysis of Tilting-Pad Journal Bearing With Heat Transfer Effects
,”
ASME J. Tribol.
,
110
(
1
), pp.
128
133
. 10.1115/1.3261550
6.
Brugier
,
D.
, and
Pascal
,
M. T.
,
1989
, “
Influence of Elastic Deformations of Turbo-Generator Tilting Pad Bearings on the Static Behavior and on the Dynamic Coefficients in Different Designs
,”
ASME J. Tribol.
,
111
(
2
), pp.
364
371
. 10.1115/1.3261925
7.
Earles
,
L.
,
Amentrout
,
R.
, and
Palazzolo
,
A.
,
1990
, “
A Finite Element Approach to Pad Flexibility Effects in Tilt Pad Journal Bearings-Part I: Single Pad Analysis
,”
ASME J. Tribol.
,
112
(
2
), pp.
169
176
. 10.1115/1.2920238
8.
Taniguchi
,
S.
,
Makino
,
T.
,
Takeshita
,
K.
, and
Ichimura
,
T.
,
1990
, “
A Thermohydrodynamic Analysis of Large Tilting-Pad Journal Bearing in Laminar and Turbulent Flow Regimes With Mixing
,”
ASME J. Tribol.
,
112
(
3
), pp.
542
550
. 10.1115/1.2920291
9.
Fillon
,
M.
,
Bligoud
,
J. C.
, and
Frene
,
J.
,
1992
, “
Experimental Study of Tilting-Pad Journal Bearings-Comparison With Theoretical Thermoelastohydrodynamic Results
,”
ASME J. Tribol.
,
114
(
3
), pp.
579
588
. 10.1115/1.2920920
10.
Kim
,
J.
,
Palazzolo
,
A. B.
, and
Gadangi
,
R. K.
,
1994
, “
TEHD Analysis for Tilting-Pad Journal Bearings Using Upwind Finite Element Method
,”
Tribo. Trans.
,
37
(
4
), pp.
771
783
. 10.1080/10402009408983359
11.
Kim
,
J.
,
Palazzolo
,
A.
, and
Gadangi
,
R.
,
1995
, “
Dynamic Characteristics of TEHD Tilt Pad Journal Bearing Simulation Including Multiple Mode Pad Flexibility Model
,”
ASME J. Vib. Accoust.
,
117
(
1
), pp.
123
135
. 10.1115/1.2873856
12.
Gadangi
,
R.
, and
Palazzolo
,
A.
,
1995
, “
Transient Analysis of Tilt Pad Journal Bearings Including Effects of Pad Flexibility and Fluid Film Temperature
,”
ASME J. Tribol.
,
117
(
2
), pp.
302
307
. 10.1115/1.2831247
13.
Desbordes
,
H.
,
Wai
,
C. C. H.
,
Fillon
,
M.
, and
Frene
,
J.
,
1995
, “
The Effects of Three-Dimensional Pad Deformations on Tilting-Pad Journal Bearings Under Dynamic Loading
,”
ASME J. Tribol.
,
117
(
3
), pp.
379
384
. 10.1115/1.2831262
14.
Fillon
,
M.
, and
Khonsari
,
M.
,
1996
, “
Thermohydrodynamic Design Charts for Tilting-Pad Journal Bearings
,”
ASME J. Tribol.
,
118
(
1
), pp.
232
238
. 10.1115/1.2837084
15.
Haugaard
,
A. M.
, and
Santos
,
I. F.
,
2010
, “
Multi-Orifice Active Tilting-Pad Journal Bearings-Harnessing of Synergetic Coupling Effects
,”
Tribol. Int.
,
43
(
8
), pp.
1374
1391
. 10.1016/j.triboint.2010.01.009
16.
Rindi
,
A.
,
Rossin
,
S.
,
Conti
,
R.
,
Frilli
,
A.
,
Galardi
,
E.
,
Meli
,
E.
,
Nocciolini
,
D.
, and
Pugi
,
L.
,
2015
, “
An Efficient Quasi-Three-Dimensional Model of Tiling Pad Journal Bearing for Turbomachinery Applications
,”
ASME J. Vib. Accoust.
,
137
(
6
), p.
061013
. 10.1115/1.4031408
17.
Dang
,
P. V.
,
Chatterton
,
S.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2016
, “
Numerical Investigation of the Effect of Manufacturing Errors in Pads on the Behavior of Tilting-Pad Journal Bearings
,”
Proc. Inst. Mech. Eng. Part J, J. Eng. Tribol.
,
232
(
4
), pp.
480
500
. 10.1177/1350650117721118
18.
Lee
,
D.
,
Sun
,
K.
,
Kim
,
B.
, and
Kang
,
D.
,
2017
, “
Thermal Behavior of a Worn Tilting Pad Journal Bearing: Thermohydrodynamic Analysis and Pad Temperature Measurement
,”
Tribo. Trans.
,
61
(
6
), pp.
1074
1083
. 10.1080/10402004.2018.1469805
19.
Mehdi
,
S. M.
,
Jang
,
K.
, and
Kim
,
T.
,
2018
, “
Effects of Pivot Design on Performance of Tilting pad Journal Bearings
,”
Tribol. Int.
,
119
, pp.
175
189
. 10.1016/j.triboint.2017.08.025
20.
Arihara
,
H.
,
Kameyama
,
Y.
,
Baba
,
Y.
, and
Andes
,
L. S.
,
2018
, “
A Thermoelastohydrodynamic Analysis for the Static Performance of High-Speed—Heavy Load Tilting-Pad Journal Bearing Operating in the Turbulent Flow Regime and Comparisons to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021023
. 10.1115/1.4041130
21.
San Andres
,
L.
, and
Tao
,
Y.
,
2013
, “
The Role of Pivot Stiffness on the Dynamic Force Coefficients of Tilting Pad Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112505
. 10.1115/1.4025070
22.
San Andres
,
L.
,
Tao
,
Y.
, and
Li
,
Y.
,
2015
, “
Tilting Pad Journal Bearings: On Bridging the Hot Gap Between Experimental Results and Model Predictions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
022505
. 10.1115/1.4028386
23.
San Andres
,
L.
, and
Li
,
Y.
,
2015
, “
Effect of Pad Flexibility on the Performance of Tilting Pad Journal Bearings—Benchmarking a Predictive Model
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122503
. 10.1115/1.4031344
24.
San Andres
,
L.
,
Koo
,
B.
, and
Hemmi
,
M.
,
2018
, “
A Flow Starvation Model for Tilting Pad Journal Bearings and Evaluation of Frequency Response Functions: A Contribution Toward Understanding the Onset of Low Frequency Shaft Motions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052506
. 10.1115/1.4038043
25.
Abdollahi
,
B.
, and
Andres
,
L. S.
,
2018
, “
Improved Estimation of Bearing Pads’ Inlet Temperature: A Model for Lubricant Mixing at Oil Feed Ports and Validation Against Test Data
,”
ASME J. Tribol.
,
141
(
3
), p.
031703
. 10.1115/1.4041720
26.
Hagemann
,
T.
,
Zeh
,
C.
,
Prölß
,
M.
, and
Schwarze
,
H.
,
2017
, “
The Impact of Convective Fluid Inertia Forces on Operation of Tilting-Pad Journal Bearings
,”
Int. J. Rotating Mach.
,
2017
, pp.
1
12
.
Article ID 5683763
. 10.1155/2017/5683763
27.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2018
, “
A Model for Oil Flow and Fluid Temperature Inlet Mixing in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
141
(
2
), p.
021701
. 10.1115/1.4041211
28.
Mermertas
,
U.
,
Hagemann
,
T.
, and
Brichart
,
C.
,
2018
, “
Optimization of a 900 mm Tilting-Pad Journal Bearing in Large Steam Turbines by Advanced Modeling and Validation
,”
ASME J. Eng. Gas Turbine Power
,
141
(
2
), p.
021033
. 10.1115/1.4041116
29.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2019
, “
Theoretical and Experimental Analyses of Directly Lubricated Tilting-Pad Journal Bearings With Leading Edge Groove
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051010
. 10.1115/1.4041026
30.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing-Part I: Theoretical Modeling
,”
ASME J. Tribol.
,
137
(
4
), p.
041703
. 10.1115/1.4030020
31.
Suh
,
J.
, and
Palazzolo
,
A.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing-Part II: Parametric Studies
,”
ASME J. Tribol.
,
137
(
4
), p.
041704
. 10.1115/1.4030021
32.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part II: Occurrence and Prevention
,”
ASME J. Tribol.
,
139
(
1
), p.
011706
. 10.1115/1.4033892
33.
Tong
,
X.
, and
Palazzolo
,
A.
,
2017
, “
Measurement and Prediction of the Journal Circumferential Temperature Distribution for the Rotordynamic Morton Effect
,”
ASME J. Tribol.
,
140
(
3
), p.
031702
. 10.1115/1.4038104
34.
Gaines
,
J. E.
, and
Childs
,
D. W.
,
2016
, “
The Impact of Pad Flexibility on the Rotordynamic Coefficients of Tilting-Pad Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
082501
. 10.1115/1.4032334
35.
Wygant
,
K. D.
,
Flack
,
R. D.
, and
Barrett
,
L. E.
,
1999
, “
Influence of Pad Pivot Friction on Tilting Pad Journal Bearing Measurement—Part I: Static Operating Conditions
,”
Tribol. Trans.
,
42
(
1
), pp.
210
215
. 10.1080/10402009908982210
36.
Wygant
,
K. D.
,
Flack
,
R. D.
, and
Barrett
,
L. E.
,
1999
, “
Influence of Pad Pivot Friction on Tilting Pad Journal Bearing Measurement—Part II: Dynamic Coefficients
,”
Tribol. Trans.
,
42
(
1
), pp.
250
256
. 10.1080/10402009908982215
37.
Pettinato
,
B. C.
, and
De Choudhury
,
P.
,
1999
, “
Test Results of Key and Spherical Pivot Five-Shoe Tilt Pad Journal Bearings—Part I: Performance Measurement
,”
Tribol. Trans.
,
42
(
3
), pp.
541
547
. 10.1080/10402009908982253
38.
Pettinato
,
B. C.
, and
De Choudhury
,
P.
,
1999
, “
Test Results of Key and Spherical Pivot Five-Shoe Tilt Pad Journal Bearings—Part II: Dynamic Measurements
,”
Tribol. Trans.
,
42
(
3
), pp.
675
680
. 10.1080/10402009908982269
39.
Kim
,
S. G.
, and
Kim
,
K. W.
,
2008
, “
Influence of Pad-Pivot Friction on Tilting Pad Journal Bearing
,”
Tribol. Int.
,
41
(
8
), pp.
694
703
. 10.1016/j.triboint.2007.12.003
40.
Kim
,
S.
, and
Palazzolo
,
A.
,
2019
, “
Pad–Pivot Friction Effect on Nonlinear Response of a Rotor Supported by Tilting-Pad Journal Bearings
,”
ASME J. Tribol.
,
141
(
9
), p.
091701
. 10.1115/1.4043971
41.
Lu
,
X.
,
Khonsari
,
M. M.
, and
Gelink
,
E. R.
,
2006
, “
The Stribeck Curve: Experimental Results and Theoretical Prediction
,”
ASME J. Tribol.
,
128
(
4
), pp.
789
794
. 10.1115/1.2345406
42.
Guo
,
Z.
,
Toshio
,
H.
, and
Gorden
,
R.
,
2005
, “
Application of CFD Analysis for Rotating Machinery Part1: Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
445
451
. 10.1115/1.1807415
43.
Liu
,
H.
,
Xu
,
H.
,
Ellison
,
P. J.
, and
Jin
,
Z.
,
2010
, “
Application of Computational Fluid Dynamics and Fluid-Structure Interaction Method to the Lubrication Study of a Rotor-Bearing System
,”
Tribol. Lett.
,
38
, pp.
324
336
. 10.1007/s11249-010-9612-6
44.
Li
,
Q.
,
Liu
,
S.
,
Pan
,
X.
, and
Zheng
,
S.
,
2012
, “
A new Method for Studying the 3D Transient Flow of Misaligned Journal Bearings in Flexible Rotor-Bearing Systems
,”
J. Zhejiang Univ. Sci. A
,
13
(
4
), pp.
293
310
. 10.1631/jzus.A1100228
45.
Lin
,
Q.
,
Wei
,
Z.
,
Wang
,
N.
, and
Chen
,
W.
,
2013
, “
Analysis on the Lubrication Performances of Journal Bearing System Using Computational Fluid Dynamics and Fluid-Structure Interaction Considering Thermal Influence and Cavitation
,”
Tribol. Int.
,
64
, pp.
8
15
. 10.1016/j.triboint.2013.03.001
46.
Li
,
M.
,
Gu
,
C.
,
Pan
,
X.
,
Zheng
,
S.
, and
Li
,
Q.
,
2016
, “
A new Dynamic Mesh Algorithm for Studying the 3D Transient Flow Field of Tilting pad Journal Bearings
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
230
(
12
), pp.
1470
1482
. 10.1177/1350650116638610
47.
Armentrout
,
R. W.
,
He
,
M.
,
Haykin
,
T.
, and
Reed
,
A.
,
2017
, “
Analysis of Turbulence and Convective Inertia in a Water-Lubricated Tilting-Lubricated Tilting-Pad Journal Bearing Using Conventional and CFD Approaches
,”
Tribol. Trans.
,
60
(
6
), pp.
1129
1147
. 10.1080/10402004.2016.1251668
48.
Crone
,
P.
,
Almqvist
,
A.
, and
Larsson
,
R.
,
2018
, “
Thermal Turbulent Flow in Leading Edge Grooved and Conventional Tilting Pad Journal Bearing Segments-A Comparative Study
,”
Lubricants
,
6
(
4
), p.
97
. 10.3390/lubricants6040097
49.
Ding
,
A.
,
Ren
,
X.
,
Li
,
X.
, and
Gu
,
C.
,
2018
, “
Friction Power Analysis and Improvement for a Tilting-pad Journal Bearing Considering air Entrainment
,”
Appl. Therm. Eng.
,
145
(
25
), pp.
763
771
. 10.1016/j.applthermaleng.2018.09.080
50.
Hagemann
,
T.
,
Zeh
,
C.
, and
Schwarze
,
H.
,
2019
, “
Heat Convection Coefficients of a Tilting-pad Journal Bearing with Directed Lubrication
,”
Tribol. Int.
,
136
, pp.
114
126
. 10.1016/j.triboint.2019.03.035
51.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
3D Thermo-Elasto-Hydrodynamic CFD Model of a Tilting Pad Journal Bearing-Part I: Static Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061702
. 10.1115/1.4043349
52.
Yang
,
J.
, and
Palazzolo
,
A.
,
2019
, “
3D Thermo-Elasto-Hydrodynamic CFD Model of a Tilting Pad Journal Bearing-Part II: Dynamic Response
,”
ASME J. Tribol.
,
141
(
6
), p.
061703
. 10.1115/1.4043350
53.
Carter
,
C. R.
,
2007
, “
Measurement and Predicted Rotordynamic Coefficients and Static Performance of a Rocker-Pivot Tilt Pad Bearing in Load-On-Pad and Load-Between-Pad Configurations
,” M.S. thesis,
Mechanical Engineering, Texas A&M University
,
College Station, TX
.
54.
Kulhanek
,
C. D.
,
2010
, “
Dynamic and Static Characteristics of a Rocker-Pivot, Tilting-Pad Bearing With 50% and 60% Offsets
,”
M.S. thesis
,
Mechanical Engineering, Texas A&M University
,
College Station, TX
.
55.
Palazzolo
,
A.
,
2016
,
Vibration Theory and Applications With Finite Elements and Active Vibration Control
,
Wiley
,
Chichester, UK
.
You do not currently have access to this content.