Abstract

A mathematical modeling approach to determine fluid film thickness on the vane tip in a vane pump transmission is developed. The transmission is based on a double-acting vane pump with an additional output shaft coupled to a floating ring. Owing to the floating ring design, the internal viscous friction helps to drive the output shaft, whereas the friction is turned into heat in a conventional vane pump. To study the mechanical efficiency, it is crucial to investigate the fluid film thickness between the vane tip and the ring inner surface. The modeling approach in this study takes the interactions between vane radial motion and chamber pressure dynamics into consideration, without using a computational fluid dynamics approach. The lubrication on the vane tip is considered as elasto-hydrodynamic lubrication and the fluid film thickness calculation is based on the Hooke lubrication diagram. Results show that the developed simulation model is capable of revealing the fluid film thickness change and vane radial motion in different operation regions. Sensitivity studies of several parameters on the minimum fluid film thickness are also presented.

References

1.
Kamal
,
E.
, and
Adouane
,
L.
,
2017
, “
Intelligent Energy Management Strategy Based on Artificial Neural Fuzzy for Hybrid Vehicle
,”
IEEE Trans. Intell. Veh.
,
3
(
1
), pp.
112
125
. 10.1109/TIV.2017.2788185
2.
Yin
,
L.
,
Liu
,
J.
,
Yang
,
H.
,
Xia
,
X.
,
Zhao
,
Z.
, and
Chen
,
S.
,
2011
, “
The Status and Development Trend of Hydraulic Hybrid Vehicle
,”
Proceedings of the 2011 International Conference on Electric Information and Control Engineering
,
Wuhan, China
,
Apr. 15–17
, pp.
5543
5546
.
3.
Antanaitis
,
D. B.
,
2010
, “
Effect of Regenerative Braking on Foundation Brake Performance
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
3
(
2
), pp.
14
30
. 10.4271/2010-01-1681
4.
Zhang
,
H.
,
Wang
,
F.
, and
Stelson
,
K. A.
,
2017
, “
Modeling and Design of a Hydraulic Hybrid Powertrain for Passenger Vehicle
,”
Proceedings of ASME/BATH 2017 Symposium on Fluid Power and Motion Control
,
Sarasota, FL
,
Oct. 16–19
https://doi.org/10.1115/FPMC2017-4353.
5.
Pettersson
,
K.
, and
Krus
,
P.
,
2013
, “
Design Optimization of Complex Hydromechanical Transmissions
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091005
. 10.1115/1.4024732
6.
Cheong
,
K. L.
,
Li
,
P. Y.
, and
Chase
,
T. R.
,
2011
, “
Optimal Design of Power-Split Transmissions for Hydraulic Hybrid Passenger Vehicles
,”
Proceedings of the 2011 American Control Conference
,
San Francisco, CA
,
June 29–July 1
, pp.
3295
3300
.
7.
Wang
,
F.
, and
Stelson
,
K. A.
,
2014
, “
A Novel Pressure-Controlled Hydro-Mechanical Transmission
,”
Proceedings of ASME/BATH 2014 Symposium on Fluid Power and Motion Control
,
Bath, UK
,
Sept. 10–12
https://doi.org/10.1115/FPMC2014-7862.
8.
Wang
,
F.
, and
Stelson
,
K. A.
,
2015
, “
A Hydraulic Hybrid Wheel Loader With a Novel Power Split Hydraulic Transmission
,”
Proceedings of the Fourteenth Scandinavian International Conference on Fluid Power
,
Tampere, Finland
,
May 20–22
.
9.
Wang
,
F.
, and
Stelson
,
K. A.
,
2014
, “
An Efficient Fan Drive System Based on a Novel Hydraulic Transmission
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2234
2241
. 10.1109/TMECH.2014.2370893
10.
Zhang
,
H.
,
Wang
,
F.
, and
Xu
,
B.
,
2018
, “
Modeling and Experimental Study of a Novel Power Split Hydraulic Transmission
,”
Proceedings of BATH/ASME 2018 Symposium on Fluid Power and Motion Control
,
Bath, UK
,
Sept. 12–14
https://doi.org/10.1115/FPMC2018-8921.
11.
Battarra
,
M.
,
Blum
,
A.
, and
Mucchi
,
E.
,
2019
, “
Kinematics of a Balanced Vane Pump With Circular Tip Vanes
,”
Mech. Mach. Theory
,
137
, pp.
355
373
. 10.1016/j.mechmachtheory.2019.03.034
12.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Tech.
,
100
(
1
), pp.
12
17
. 10.1115/1.3453103
13.
Cho
,
M. R.
, and
Han
,
D. C.
,
1998
, “
Vane Tip Detachment in a Positive Displacement Vane Pump
,”
KSME Int. J.
,
12
(
5
), pp.
881
887
. 10.1007/BF02945555
14.
Giuffrida
,
A.
, and
Lanzafame
,
R.
,
2005
, “
Cam Shape and Theoretical Flow Rate in Balanced Vane Pumps
,”
Mech. Mach. Theory
,
40
(
3
), pp.
353
369
. 10.1016/j.mechmachtheory.2004.07.008
15.
Inaguma
,
Y.
, and
Hibi
,
A.
,
2005
, “
Vane Pump Theory for Mechanical Efficiency
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
219
(
11
), pp.
1269
1278
. 10.1243/095440605X32002
16.
Inaguma
,
Y.
, and
Nakamura
,
K.
,
2014
, “
Influence of Leakage Flow Variation on Delivery Pressure Ripple in a Vane Pump
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
228
(
2
), pp.
342
357
. 10.1177/0954406213484669
17.
Battarra
,
M.
, and
Mucchi
,
E.
,
2020
, “
On the Relation Between Vane Geometry and Theoretical Flow Ripple in Balanced Vane Pumps
,”
Mech. Mach. Theory
,
146
, p.
103736
. 10.1016/j.mechmachtheory.2019.103736
18.
Inaguma
,
Y.
,
2014
, “
Friction Characteristics of Vane for a Balanced Vane Pump
,”
Trans. Japan Fluid Power Syst. Soc.
,
45
(
4
), pp.
58
65
. 10.5739/jfps.45.58
19.
Inaguma
,
Y.
, and
Hibi
,
A.
,
2007
, “
Reduction of Friction Torque in Vane Pump by Smoothing Cam Ring Surface
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
221
(
5
), pp.
527
534
. 10.1243/0954406JMES225
20.
Inaguma
,
Y.
,
2010
, “
Reduction of Friction Torque in Vane Pumps by Using Physical Vapour Deposition-Coated Vane
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
224
(
11
), pp.
2449
2458
. 10.1243/09544062JMES2120
21.
Shaonian
,
L.
,
Liejiang
,
W.
,
Zhengrong
,
W.
, and
Hong
,
J.
,
2011
, “
Effects of Shape of Vane on Force of Vane in High Pressure Vane Pump
,”
Proceedings of 2011 International Conference on Fluid Power and Mechatronics
,
Beijing, China
,
Aug. 17–20
, pp.
42
45
.
22.
Cho
,
I. S.
,
Oh
,
S. H.
,
Song
,
K. K.
, and
Jung
,
J. Y.
,
2006
, “
The Lubrication Characteristics of the Vane Tip Under Pressure Boundary Condition of Oil Hydraulic Vane Pump
,”
J. Mech. Sci. Technol.
,
20
(
10
), pp.
1716
1721
. 10.1007/BF02916275
23.
Mucchi
,
E.
,
Agazzi
,
A.
,
D’Elia
,
G.
, and
Dalpiaz
,
G.
,
2013
, “
On the Wear and Lubrication Regime in Variable Displacement Vane Pumps
,”
Wear
,
306
(
1–2
), pp.
36
46
. 10.1016/j.wear.2013.06.025
24.
Frendo
,
F.
,
Novi
,
R.
, and
Squarcini
,
F.
,
2006
, “
Numerical and Experimental Analysis of Variable Displacement Vane Pumps
,”
Proceedings of 2006 International Conference on Tribology
,
Parma, Italy
,
Sept. 20–22
, pp.
20
22
.
25.
Truong
,
D. Q.
,
Ahn
,
K. K.
,
Trung
,
N. T.
, and
Lee
,
J. S.
,
2013
, “
Theoretical Investigation of a Variable Displacement Vane-Type Oil Pump
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
227
(
3
), pp.
592
608
. 10.1177/0954406212464615
26.
Truong
,
D. Q.
,
Ahn
,
K. K.
,
Trung
,
N. T.
, and
Lee
,
J. S.
,
2013
, “
Performance Analysis of a Variable-Displacement Vane-Type Oil Pump for Engine Lubrication Using a Complete Mathematical Model
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
227
(
10
), pp.
1414
1430
. 10.1177/0954407013491896
27.
Fiebig
,
W.
,
Ignacy
,
D.
,
Marek
,
C.
, and
Hubert
,
K.
,
2014
, “
A Vane Pump Integrated With an Electric Motor
,”
Proceedings of 9th International Fluid Power Conference
,
Aachen, Germany
,
March 24–26
, pp.
24
26
.
28.
Suzuki
,
K.
,
Nakamura
,
Y.
,
Yakabe
,
S.
,
Watanabe
,
H.
, and
Nakamura
,
K.
,
2016
, “
Characteristics Prediction of Vane Pump by CFD Analysis
,”
KYB Tech. Rev. Technol.
,
53
, pp.
8
15
.
29.
Rundo
,
M.
, and
Altare
,
G.
,
2017
, “
Lumped Parameter and Three-Dimensional CFD Simulation of a Variable Displacement Vane Pump for Engine Lubrication
,”
Proceedings of ASME 2017 Fluids Engineering Division Summer Meeting
,
Waikoloa, HI
,
July 30–Aug. 3
. https://doi.org/10.1115/FEDSM2017-69124
30.
Cho
,
I. S.
,
2015
, “
Behavioral Characteristics of the Vane of a Hydraulic Vane Pump for Power Steering Systems
,”
J. Mech. Sci. Technol.
,
29
(
10
), pp.
4483
4489
. 10.1007/s12206-015-0947-7
31.
Elashmawy
,
M.
, and
Alghamdi
,
A.
,
2015
, “
Vane Geometry Effect on Lubrication Conditions Between Vane Tip and Cam-Ring in Hydraulic Vane Machines
,”
Int. J. Mech. Eng. Appl.
,
3
(
1–2
), pp.
1
10
. 10.11648/j.ijmea.s.2015030102.11
32.
Dowson
,
D.
, and
Higginson
,
G. R.
,
2014
,
Elasto-Hydrodynamic Lubrication
,
Elsevier
,
Amsterdam
.
33.
Wen
,
S.
, and
Huang
,
P.
,
2012
,
Principles of Tribology
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.