Abstract

Many studies in herringbone grooved thrust bearings are focused on searching for the optimal groove parameters to improve the load capacity, but none of them adopt different grooves in different sections. In this study, a novel optimization method of herringbone grooved thrust air bearings is proposed for maximum load capacity by seeking the optimal groove parameters in each section of the bearing independently. An example of an optimized thrust air bearing is presented, and its performance is compared with a non-optimized bearing and a conventionally optimized bearing without dividing grooves into sections. The resultant herringbone grooves are found to have different parameters in the inner and outer sections, which is uncommon in existing grooves. Numerical results show that the novel bearing has a higher load capacity than the non-optimized reference bearing and conventionally optimized bearing. The study shows that the new design can increase load capacity by 30.77%, verified by experiments.

References

1.
Fuller
,
D. D.
,
1969
, “
A Review of the State-of-the-Art for the Design of Self-Acting Gas-Lubricated Bearings
,”
ASME J. Tribol.
,
91
(
1
), pp.
1
16
.https://doi.org/10.1115/1.3554857
2.
Hashimoto
,
H.
, and
Namba
,
T.
,
2009
, “
Optimization of Groove Geometry for a Thrust Air Bearing According to Various Objective Functions
,”
ASME J. Tribol.
,
131
(
4
), p.
041704
. https://doi.org/10.1115/1.3201860
3.
Lee
,
Y. T.
,
Yang
,
A. S.
,
Juan
,
Y. H.
,
Liu
,
C. S.
, and
Chang
,
Y. H.
,
2017
, “
A New Micro-Hydrodynamic Herringbone Bearing Using Slant Groove Depth Arrangements for Performance Enhancement
,”
J. Mech.
,
33
(
5
), pp.
725
737
.
4.
Gao
,
S.
,
Shi
,
Y.
,
Xu
,
L.
,
Chen
,
H.
, and
Cheng
,
K.
,
2019
, “
Investigation on Influences of Herringbone Grooves for the Aerostatic Journal Bearings Applied to Ultra-High-Speed Spindles
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
233
(
16
), pp.
5795
5812
.
5.
Kang
,
C.
,
Jung
,
K.
,
Lee
,
M.
, and
Jang
,
G.
,
2018
, “
Finite-Element Coupled Analyses of the Reynolds and Hagen–Poiseuille Equations to Calculate Pressure and Flow of Fluid Dynamic Bearings With a Recirculation Channel
,”
Tribol. Int.
,
128
, pp.
52
64
.
6.
Wang
,
C. C.
, and
He
,
C. L.
,
2019
, “
Numerical Study of a Hydrodynamic Journal Bearing With Herringbone Grooves for Oil Leakage Reduction
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
3
), pp.
439
446
.
7.
Battig
,
P.
, and
Schiffmann
,
J.
,
2019
, “
Data-Driven Model for the Dynamic Characteristics of O-Rings for Gas Bearing Supported Rotors
,”
ASME J. Appl. Mech.
,
86
(
8
), p.
081003
. https://doi.org/10.1115/1.4043473
8.
Hirayama
,
T.
,
Yamaguchi
,
N.
,
Sakai
,
S.
,
Hishida
,
N.
,
Matsuoka
,
T.
, and
Yabe
,
H.
,
2009
, “
Optimization of Groove Dimensions in Herringbone-Grooved Journal Bearings for Improved Repeatable Run-Out Characteristics
,”
Tribol. Int.
,
42
(
5
), pp.
675
681
.
9.
Hashimoto
,
H.
,
Ochiai
,
M.
, and
Nanba
,
T.
,
2007
, “
Theoretical Analysis and Optimum Design of High Speed Air Film Thrust Bearings
,”
J. Adv. Mech. Des. Syst. Manuf.
,
1
(
3
), pp.
306
318
.
10.
Zhang
,
Q.
,
Guo
,
G.
, and
Bi
,
C.
,
2005
, “
Air Bearing Spindle Motor for Hard Disk Drives
,”
Tribol. Trans
,
48
(
4
), pp.
468
473
. 10.1080/05698190500313445
11.
Chen
,
C. Y.
,
Liu
,
C. S.
,
Li
,
Y. C.
, and
Mou
,
S.
,
2015
, “
Geometry Optimization for Asymmetrical Herringbone Grooves of Miniature Hydrodynamic Journal Bearings by Using Taguchi Technique
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
2
), pp.
196
206
.
12.
Chen
,
C. Y.
,
Liu
,
C. S.
, and
Li
,
Y. C.
,
2015
, “
Design and Characterization of Miniature Fluid Dynamic Bearing Using Novel Multi-Step Elliptical Grooves
,”
Microsyst. Technol.
,
21
, pp.
91
100
.
13.
Yen
,
R. H.
, and
Chen
,
C. Y.
,
2011
, “
Enhancement of Reversible Rotation Journal Bearing Performance Using Elliptical Grooves
,”
ASME J. Tribol.
,
133
(
1
), p.
011704
. https://doi.org/10.1115/1.4003148
14.
Talbi
,
E.-G.
,
2009
,
Metaheuristics: From Design to Implementation
,
John Wiley & Sons
,
Hoboken, NJ
.
15.
Montazeri-Gh
,
M.
,
Poursamad
,
A.
, and
Ghalichi
,
B.
,
2006
, “
Application of Genetic Algorithm for Optimization of Control Strategy in Parallel Hybrid Electric Vehicles
,”
Met. Finish.
,
343
(
4–5
), pp.
420
435
.
16.
Ma
,
H.
,
Xu
,
H.
,
Wang
,
J.
,
Schnier
,
T.
,
Neaves
,
B.
,
Tan
,
C.
, and
Wang
,
Z.
,
2015
, “
Model-Based Multiobjective Evolutionary Algorithm Optimization for HCCI Engines
,”
IEEE Trans. Veh. Technol.
,
64
(
9
), pp.
4326
4331
.
17.
Long
,
V. T.
, and
Nhan
,
N. V.
,
2012
, “
Bees-Algorithm-Based Optimization of Component Size and Control Strategy Parameters for Parallel Hybrid Electric Vehicles
,”
Int. J. Automot. Technol.
,
13
(
7
), pp.
1177
1183
.
18.
Castaings
,
A.
,
Lhomme
,
W.
,
Trigui
,
R.
, and
Bouscayrol
,
A.
,
2016
, “
Comparison of Energy Management Strategies of a Battery/Supercapacitors System for Electric Vehicle Under Real-Time Constraints
,”
Appl. Energy
,
163
, pp.
190
200
. 10.1016/j.apenergy.2015.11.020
19.
Sun
,
S. H.
,
Yu
,
T. T.
,
Nguyen
,
T. T.
,
Atroshchenko
,
E.
, and
Bui
,
T. Q.
,
2018
, “
Structural Shape Optimization by IGABEM and Particle Swarm Optimization Algorithm
,”
Eng. Anal. Bound. Elem.
,
88
, pp.
26
40
. 10.1016/j.enganabound.2017.12.007
20.
Yang
,
X.-S.
,
2010
,
Nature-Inspired Metaheuristic Algorithms
,
Luniver Press
,
UK
.
21.
Gandomi
,
A. H.
,
Yun
,
G. J.
,
Yang
,
X. S.
, and
Talatahari
,
S.
,
2013
, “
Chaos-Enhanced Accelerated Particle Swarm Optimization
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
2
), pp.
327
340
.
22.
Yu
,
Y.
,
Pu
,
G.
,
Jiang
,
T.
, and
Jiang
,
K.
,
2020
, “
Discontinuous Grooves in Thrust Air Bearings Designed With CAPSO Algorithm
,”
Int. J. Mech. Sci.
,
165
, p.
105197
. 10.1016/j.ijmecsci.2019.105197
23.
Zhang
,
Y.
,
Zhou
,
Q.
,
Li
,
Z.
,
Li
,
J.
, and
Xu
,
H.
,
2019
, “
Intelligent Transient Calibration of a Dual-Loop EGR Diesel Engine Using Chaos-Enhanced Accelerated Particle Swarm Optimization Algorithm
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
233
(
7
), pp.
1698
1711
.
24.
Zhou
,
Q.
,
Zhang
,
W.
,
Cash
,
S.
,
Olatunbosun
,
O.
,
Xu
,
H.
, and
Lu
,
G.
,
2017
, “
Intelligent Sizing of a Series Hybrid Electric Power-Train System Based on Chaos-Enhanced Accelerated Particle Swarm Optimization
,”
Appl. Energy
,
189
, pp.
588
601
.
25.
Bhore
,
S. P.
, and
Darpe
,
A. K.
,
2013
, “
Investigations on Characteristics of Micro/Meso Scale Gas Foil Journal Bearings for 100–200 W Class Micro Power Systems Using First Order Slip Velocity Boundary Conditions and the Effective Viscosity Model
,”
Microsyst. Technol
,
19
(
4
), pp.
509
523
. 10.1007/s00542-012-1639-1
26.
Veijola
,
T.
, and
Turowski
,
M.
,
2001
, “
Compact Damping Models for Laterally Moving Microstructures With Gas-Rarefaction Effects
,”
J. Microelectromechanical Syst.
,
10
(
2
), pp.
263
273
.
27.
Waumans
,
T.
,
Mattheijssens
,
J.
,
Meuws
,
D.
,
Vleugels
,
P.
,
Peirs
,
J.
,
Al-Bender
,
F.
, and
Reynaerts
,
D.
,
2007
, “
Design and Testing of Aerodynamic Thrust Bearings for Micro Turbomachinery Applications
,”
Proceedings of the 7th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications
,
Freiburg, Germany
,
Nov. 28–29
, pp. 257–260.
28.
Wang
,
N.
, and
Chang
,
C.
,
1999
, “
An Application of Newton’s Method to the Lubrication Analysis of Air-Lubricated Bearings
,”
Tribol. Trans.
,
42
(
2
), pp.
419
424
.
29.
Yu
,
Y.
,
Pu
,
G.
,
Jiang
,
T.
, and
Jiang
,
K.
,
2020
, “
A Dragonfly Wing Inspired Biomimetic Aerodynamic Thrust Bearing for Increased Load Capacity
,”
Int. J. Mech. Sci.
,
176
, p.
105550
.
30.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME J. Fluids Eng.
,
87
(
3
), pp.
547
555
.10.1115/1.3650603
31.
Zirkelback
,
N.
, and
Andrés
,
L. S.
,
1999
, “
Effect of Frequency Excitation on Force Coefficients of Spiral Groove Gas Seals
,”
ASME J. Tribol.
,
121
(
4
), pp.
853
861
. 10.1115/1.2834145
32.
Liu
,
Y.
,
Shen
,
X.
, and
Xu
,
W.
,
2002
, “
Numerical Analysis of Dynamic Coefficients for Gas Film Face Seals
,”
ASME J. Tribol.
,
124
(
4
), pp.
743
754
. 10.1115/1.1472459
33.
Cui
,
C.
, and
Ono
,
K.
,
1997
, “
Theoretical and Experimental Investigation of an Externally Pressurized Porous Annular Thrust Gas Bearing and Its Optimal Design
,”
ASME J. Tribol.
,
119
(
3
), pp.
486
492
. 10.1115/1.2833524
34.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2008
, “
Optimization of Groove Geometry for Thrust Air Bearing to Maximize Bearing Stiffness
,”
ASME J. Tribol.
,
130
(
3
), p.
031101
. https://doi.org/10.1115/1.2913546
You do not currently have access to this content.