Abstract

To predict the life of the clutch friction plate, friction characteristics of the friction plate and the steel sheet assembly are analyzed in the full life cycle. A contact model of the friction surface is built based on the micro-convex body model. Wear mathematical models of friction plate are established respectively based on the contact model and sliding friction work model. The wear results of the two models are compared and analyzed. The effect of temperature on wear is considered. Fatigue life of the friction plate is predicted by wear mathematical model according to the real working states. The accuracy of the contact model and the influence of temperature on the wear are determined through the comparative analysis of each prediction result.

References

1.
Lingesten
,
N.
,
Marklund
,
P.
,
Höglund
,
E.
,
Lund
,
M.
,
Lundin
,
J.
, and
Mäki
,
R.
,
2012
, “
Apparatus for Continuous Wear Measurements During Wet Clutch Durability Tests
,”
Wear
,
288
(
2012
), pp.
54
61
. 10.1016/j.wear.2012.02.014
2.
Li
,
M.
,
Khonsari
,
M. M.
,
McCarthy
,
D. M. C.
, and
Lundin
,
J.
,
2015
, “
On the Wear Prediction of the Paper-Based Friction Material in a Wet Clutch
,”
Wear
,
334–335
(
2015
), pp.
56
66
. 10.1016/j.wear.2015.04.005
3.
Liu
,
X.
,
Mao
,
K.
,
Wang
,
X.
,
Wang
,
X.
, and
Wang
,
Y.
,
2020
, “
A modified quality loss model of service life prediction for products via wear regularity
,”
Reliab. Eng. Syst. Safe.
,
204
, pp.
107187
. 10.1016/j.ress.2020.107187
4.
Zhang
,
M.
,
Liu
,
X.
,
Wang
,
Y.
, and
Wang
,
X.
,
2019
, “
Parameters Distribution Characteristics of Material Fatigue Life Based on Improved Bootstrap Method
,”
Int. J. Damage Mech.
,
28
(
5
), pp.
772
793
. 10.1177/1056789518792658
5.
Carpick
,
R. W.
,
2018
, “
The Contact Sport of Rough Surfaces
,”
Science
,
359
(
6371
), p.
38
. 10.1126/science.aaq1814
6.
Anoopnath
,
P. R.
,
Babu
,
V. S.
, and
Vishwanath
,
A. K.
,
2018
, “
Hertz Contact Stress of Deep Groove Ball Bearing
,”
Mater. Today
,
5
(
2
), pp.
3283
3288
.
7.
Abdo
,
J.
, and
Farhang
,
K.
,
2005
, “
Elastic-Plastic Contact Model for Rough Surfaces Based on Plastic Asperity Concept
,”
Int. J. Nonlin. Mech.
,
40
(
4
), pp.
495
506
. 10.1016/j.ijnonlinmec.2004.08.003
8.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
. 10.1115/1.2920588
9.
Song
,
H.
,
Vaki
,
A. I.
,
Liu
,
X.
, and
Van der Giessen
,
E.
,
2017
, “
Statistical Model of Rough Surface Contact Accounting for Size-Dependent Plasticity and Asperity Interaction
,”
J. Mech. Phys. Solids
,
106
, pp.
1
14
. 10.1016/j.jmps.2017.05.014
10.
Hills
,
D. A.
, and
Sackfield
,
A.
,
1985
, “
Sliding Contact Between Dissimilar Elastic Cylinders
,”
ASME J. Tribol.
,
107
(
4
), pp.
463
466
. 10.1115/1.3261109
11.
Wang
,
H.
,
Liu
,
X.
,
Wang
,
X.
, and
Wang
,
Y.
,
2019
, “
Numerical Method for Estimating Fatigue Crack Initiation Size Using Elastic-Plastic Fracture Mechanics Method
,”
Appl. Math. Model.
,
73
, pp.
365
377
. 10.1016/j.apm.2019.04.010
12.
You
,
Z.
,
Liu
,
X.
,
Wang
,
X.
,
Wang
,
Y.
, and
Wang
,
X.
,
2020
, “
Numerical Method for Fatigue Life of Aircraft Lugs Under Thermal Stress
,”
J. Aircraft
,
57
(
4
), pp.
597
602
. 10.2514/1.C035784
13.
Wang
,
M.
,
Liu
,
X.
,
Wang
,
X.
, and
Wang
,
Y.
,
2018
, “
Probabilistic Modeling of Unified S-N Curves for Mechanical Parts
,”
Int. J. Damage Mech.
,
27
(
7
), pp.
979
999
. 10.1177/1056789517719117
14.
Liu
,
X.
,
Zhang
,
M.
,
Wang
,
H.
,
Luo
,
J.
,
Tong
,
J.
, and
Wang
,
X.
,
2003
, “
Fatigue Life Analysis of Automotive Key Parts Based on Improved Peak-Over-Threshold Method
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
8
), pp.
1824
1836
. 10.1111/ffe.13235
15.
Argatov
,
I. I.
, and
Chai
,
Y. S.
,
2020
, “
Wear Contact Problem With Friction: Steady-State Regime and Wearing-In Period
,”
Int. J. Solids Struct.
,
193–194
, pp.
213
221
. 10.1016/j.ijsolstr.2020.02.019
16.
Iqbal
,
S.
,
Al-Bender
,
F.
,
Ompusunggu
,
A. P.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2015
, “
Modeling and Analysis of Wet Friction Clutch Engagement Dynamics
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
420
436
. 10.1016/j.ymssp.2014.12.024
17.
Yu
,
M. M.-H.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Three-Dimensional Rough Surfaces Under Frectionless and Frictional Contact
,”
Wear
,
200
(
1–2
), pp.
265
280
. 10.1016/S0043-1648(96)07313-9
18.
Wang
,
Z.
, and
Liu
,
X.
,
2018
, “
Model for Elastic–Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
140
(
5
), p.
051402
. 10.1115/1.4040385
19.
Nyman
,
P.
,
Maki
,
R.
,
Olsson
,
R.
, and
Ganemi
,
B.
,
2006
, “
Influence of Surface Topography on Friction Characteristics in Wet Clutch Applications
,”
Wear
,
261
(
1
), pp.
46
52
. 10.1016/j.wear.2005.09.020
20.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
,
295
(
1442
), pp.
300
319
.
21.
Reinert
,
L.
,
Green
,
I.
,
Gimmler
,
S.
,
Lechthaler
,
B.
,
Mücklich
,
F.
, and
Suárez
,
S.
,
2018
, “
Tribological Behavior of Self-Lubricating Carbon Nanoparticle Reinforced Metal Matrix Composites
,”
Wear
,
408
(
1
), pp.
72
85
. 10.1016/j.wear.2018.05.003
22.
Liu
,
P.
,
Zhao
,
H.
,
Huang
,
K.
, and
Chen
,
Q.
,
2015
, “
Research on Normal Contact Stiffness of Rough Surface Considering Friction Based on Fractal Theory
,”
Appl. Surf. Sci.
,
349
, pp.
43
48
. 10.1016/j.apsusc.2015.04.174
23.
Stickel
,
D.
,
Wimmer
,
M. A.
, and
Fischer
,
A.
,
2013
, “
Analyzing Pin-on-Ball Wear Tests by Means of the Greenwood–Williamson Contact Model
,”
Wear
,
301
(
1–2
), pp.
4
10
. 10.1016/j.wear.2012.12.056
24.
Chen
,
Q.
,
Xu
,
F.
,
Liu
,
P.
, and
Fan
,
H.
,
2016
, “
Research on Fractal Model of Normal Contact Stiffness Between Two Spheroidal Joint Surfaces Considering Friction Factor
,”
Tribol. Int.
,
97
, pp.
253
264
. 10.1016/j.triboint.2016.01.023
25.
Chen
,
Q.
,
Huang
,
S.
, and
Zhang
,
Z.
,
2016
, “
Fractal Model of Contact Capacity of Two Cylinders Considering Friction Factors
,”
Chin. J. Mech. Eng.
,
52
(
7
), pp.
114
121
. 10.3901/JME.2016.07.114
26.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
(
1
), pp.
153
159
. 10.1115/1.3607616
27.
Kucharski
,
S.
, and
Starzynski
,
G.
,
2019
, “
Contact of Rough Surfaces Under Normal and Tangential Loading
,”
Wear
,
440–441
, p.
203075
. 10.1016/j.wear.2019.203075
28.
Kragelsky
,
I. V.
,
Dobychin
,
M. N.
, and
Kombalov
,
V. S.
,
1982
,
Friction and Wear: Calculation Methods
,
Pergamon Press
,
New York
.
29.
Park
,
J.
,
Choi
,
S.
,
Oh
,
J.
, and
Eo
,
J.
,
2019
, “
Adaptive Torque Tracking Control During Slip Engagement of a Dry Clutch in Vehicle Powertrain
,”
Mech. Mach. Theory
,
134
, pp.
249
266
. 10.1016/j.mechmachtheory.2018.12.033
30.
Yu
,
L.
,
Ma
,
B.
,
Chen
,
M.
,
Li
,
H.
, and
Liu
,
J.
,
2020
, “
Investigation on the Thermodynamic Characteristics of the Deformed Separate Plate in a Multi-Disc Clutch
,”
Eng. Fail. Anal.
,
110
, p.
104385
. 10.1016/j.engfailanal.2020.104385
31.
Gong
,
T.
,
Yao
,
P.
,
Xiao
,
Y.
,
Fan
,
K.
,
Tan
,
H.
,
Zhang
,
Z.
,
Zhao
,
L.
,
Zhou
,
H.
, and
Deng
,
M.
,
2015
, “
Wear Map for a Copper-Based Friction Clutch Material Under Oil Lubrication
,”
Wear
,
328–329
, pp.
270
276
. 10.1016/j.wear.2015.02.055
32.
Liu
,
L.
,
Li
,
L.
,
Wu
,
Q.
, and
Che
,
M.
,
2017
, “
Effects of High Speed Straight-Line Braking on Cu-Based Powder Metallurgy Friction Material
,”
Powder Metall. Technol.
,
35
(
6
), pp.
422
426
.
33.
Lin
,
S.
,
1995
,
Design and Manufacture of Diaphragm Spring and Disc Spring Clutch
,
Southeast University Press
,
Nanjing, China
.
34.
Wang
,
L.
,
Ma
,
B.
,
Li
,
H.
, and
Zheng
,
C.
,
2008
,
Research on Wear Calculation Method for Friction Disc of Wet Shifting Clutch
,
China Mechanical Engineering
,
China
, p.
19
.
35.
Xu
,
E.
,
Huang
,
J.
,
Li
,
Y.
,
Zhu
,
Z.
,
Cheng
,
M.
,
Li
,
D.
,
Zhong
,
H.
,
Liu
,
J.
, and
Jiang
,
Y.
,
2019
, “
Graphite Cluster/Copper-Based Powder Metallurgy Composite for Pantograph Slider With Well-Behaved Mechanical and Wear Performance
,”
Powder Technol.
,
344
, pp.
551
560
. 10.1016/j.powtec.2018.12.059
36.
Wahlström
,
J.
,
2015
, “
A Comparison of Measured and Simulated Friction, Wear, and Particle Emission of Disc Brakes
,”
Tribol. Int.
,
92
, pp.
503
511
. 10.1016/j.triboint.2015.07.036
37.
Wang
,
M.
,
Liu
,
X.
,
Wang
,
X.
, and
Wang
,
Y.
,
2017
, “
Fatigue Test Analysis of Automotive Key Parts Based on Censored Data and Small Sample Setting
,”
Qual. Reliab. Eng. Int.
,
33
(
5
), pp.
1031
1043
. 10.1002/qre.2089
38.
Wang
,
H.
,
Liu
,
X.
,
Zhang
,
M.
,
Wang
,
Y.
, and
Wang
,
X.
,
2019
, “
Prediction of Material Fatigue Parameters for Low Alloy Forged Steels Considering Error Circle
,”
Int. J. Fatigue
,
121
, pp.
135
145
. 10.1016/j.ijfatigue.2018.12.002
39.
Wang
,
S.
,
Liu
,
X.
,
Jiang
,
C.
,
Wang
,
X.
, and
Wang
,
X.
,
2020
, “
Prediction and Evaluation of Fatigue Life for Mechanical Components Considering an Elasticity‐Based Load Spectrum
,”
Fatigue Fract. Eng. Mater. Struct
. 10.1111/ffe.13340
40.
Liu
,
X.
,
Kan
,
F.
,
Wang
,
H.
,
Xin
,
X.
,
Wang
,
Z.
, and
Huang
,
H.
,
2019
, “
Fatigue Life Prediction of Clutch Sleeve Based on Abrasion Mathematical Model in Service Period
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
3
), pp.
488
501
. 10.1111/ffe.13133
You do not currently have access to this content.