Abstract

The set and roller slip of an NU215 cylindrical roller bearing with medium clearance (MC) and tight clearance (TC) classes have been tested and compared to those of extensive clearance (EC) presented in Parts I and II of this publication. A total of two cages were tested in this part presenting the brass and polyamide single-part cages. The normal TC clearance under the tight fitting of the inner and outer rings resulted in preloading of all the rollers and hence no set slip. Under low oil flowrates, the roller experienced no slip even in the load free zone. For the MC clearance, the polyamide cage showed better behavior (less roller and rolling set slip tendency) than the brass cage contrasting the results obtained earlier under the EC clearance. It is concluded that the polyamide cage deforms under the unsymmetrical loading of the EC clearance resulting in this elevated slip however, under a more even loading in the MC clearance, its lightweight was reflected in a reduced slip behavior.

References

1.
Tomovic
,
R.
,
2013
, “
Investigation of the Effect of Rolling Bearing Construction on Internal Load Distribution and the Number of Active Rolling Elements
,”
Adv. Mater. Res.
,
633
(
1
), pp.
103
116
.
2.
Oswald
,
F. B.
,
Zaretsky
,
E. v.
, and
Poplawski
,
J. v.
,
2012
, “
Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings
,”
Tribol. Trans.
,
55
(
2
), pp.
245
265
.
3.
Zheng
,
J.
,
Ji
,
J.
,
Yin
,
S.
, and
Tong
,
V. C.
,
2020
, “
Internal Loads and Contact Pressure Distributions on the Main Shaft Bearing in a Modern Gearless Wind Turbine
,”
Tribol. Int
,
141
, p.
105960
.
4.
Hao
,
X.
,
Gu
,
X.
,
Zhou
,
X.
,
Liao
,
X.
, and
Han
,
Q.
,
2019
, “
Distribution Characteristics of Stress and Displacement of Rings of Cylindrical Roller Bearing
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
233
(
12
), pp.
4348
4358
.
5.
Wang
,
J.
,
Xu
,
M.
,
Zhang
,
C.
,
Huang
,
B.
, and
Gu
,
F.
,
2020
, “
Online Bearing Clearance Monitoring Based on an Accurate Vibration Analysis
,”
Energies
,
13
(
2
), p.
389
.
6.
Goodelle
,
R. A.
,
Derner
,
W. J.
, and
Root
,
L. E.
,
1971
, “
Determination of Static Load Distributions From Elastic Contacts in Rolling Element Bearings
,”
ASLE Trans.
,
14
(
4
), pp.
275
291
.
7.
Palmgren
,
A.
,
1959
,
Ball and Roller Bearing Engineering
,
SKF Industries
,
Philadelphia
.
8.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
9.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Rolling Bearing Analysis: Essential Concepts of Bearing Technology
,
Taylor & Francis
,
London
, pp.
1
295
.
10.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Rolling Bearing Analysis: Advanced Concepts of Bearing Technology
,
Taylor & Francis
,
London
, pp.
1
386
.
11.
Oswald
,
F. B.
,
Zaretsky
,
E. v.
, and
Poplawski
,
J. V.
,
2009
, “
Interference-Fit Life Factors for Roller Bearings
,”
Tribol. Trans.
,
52
(
4
), pp.
415
426
.
12.
Stuhler
,
P.
, and
Nagler
,
N.
,
2021
, “
Stand der Technik: Anschmierungen in Radial-Zylinderrollenlagern. Definition, Mechanismus, Einflüsse, Abhilfen und Potenziale
,”
Forsch. im Ingenieurwes. Eng. Res.
,
86
, pp.
1
20
.
13.
Bajer
,
P.
,
2016
,
Einflussgrößen auf das Schlupfverhalten von Wälzlagern in Generatorgetrieben
,
TU Kaiserslautern
,
Germany
, pp.
1
201
.
14.
DIN 620-4:2004-06, Rolling Bearings—Rolling Bearing Tolerances—Part 4: Radial Internal Clearance
.
15.
Schaeffler
,
2018
, “
Wälzlager: Technische Grundlagen und Produktdaten zur Gestaltung von Wälzlagerungen
,” Schaeffler [Online], https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/catalogue_1/downloads_6/hr1_de_de.pdf
16.
SKF
,
2013
, “
SKF Wälzlagerkatalog
,”
Skf
,
53
(
9
), pp.
1689
1699
.
17.
Chang
,
L.
,
Cusano
,
C.
, and
Conry
,
T. F.
,
1990
, “
Analysis of High-Speed Cylindrical Roller Bearings Using a Full Elastohydrodynamic Lubrication Model Part 1: Formulation
,”
Tribol. Trans.
,
33
(
2
), pp.
274
284
.
18.
Chang
,
L.
,
Conry
,
T. F.
, and
Gusano
,
C.
,
1990
, “
Analysis of High-Speed Cylindrical Roller Bearings Using a Full Elastohydrodynamic Lubrication Model Part 2: Results
,”
Tribol. Trans.
,
33
(
2
), pp.
285
291
.
19.
Yakout
,
M.
,
Nassef
,
M. G. A.
, and
Backar
,
S.
,
2019
, “
Effect of Clearances in Rolling Element Bearings on Their Dynamic Performance, Quality and Operating Life
,”
J. Mech. Sci. Technol.
,
33
(
5
), pp.
2037
2042
.
20.
Upadhyay
,
S. H.
,
Harsha
,
S. P.
, and
Jain
,
S. C.
,
2010
, “
Analysis of Nonlinear Phenomena in High Speed Ball Bearings Due to Radial Clearance and Unbalanced Rotor Effects
,”
J. Vib. Control
,
16
(
1
), pp.
65
88
.
21.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
,
2002
, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
Tribol. Trans.
,
45
(
4
), pp.
485
490
.
22.
Qian
,
W.
,
2013
, “
Dynamic Simulation of Cylindrical Roller Bearing
s,” Rheinisch-Westfälische Technische Hochschule Aachen.
23.
Vaes
,
D.
,
Guo
,
Y.
,
Tesini
,
P.
, and
Keller
,
J.
,
2019
, “
Investigation of Roller Sliding in Wind Turbine Gearbox High-Speed-Shaft Bearings
www.nrel.gov/publications
24.
Harris
,
T. A.
, and
Mindel
,
M. H.
,
1973
, “
Rolling Element Bearing Dynamics
,”
Wear
,
23
(
3
), pp.
311
337
.
25.
Nogi
,
T.
,
Maniwa
,
K.
, and
Matsuoka
,
N.
,
2018
, “
A Dynamic Analysis of Cage Instability in Ball Bearings
,”
J. Tribol.
,
140
(
1
), pp.
1
12
.
26.
Poplawski
,
J. V.
,
1971
, “
Slip and Cage Forces in a High-Speed Roller Bearing
,” ASME Paper No. 71-Lub-17.
27.
Ghaisas
,
N.
,
Wassgren
,
C. R.
, and
Sadeghi
,
F.
,
2004
, “
Cage Instabilities in Cylindrical Roller Bearings
,”
J. Tribol
,
126
(
4
), pp.
681
689
.
28.
Choe
,
B.
,
Lee
,
J.
,
Jeon
,
D.
, and
Lee
,
Y.
,
2018
, “
Numerical Study of Cage Dynamics Focused on Hydrodynamic Effects of Guidance Land Clearances for Different Ball-Pocket Clearances in Cryogenic Environments
,”
ASME J. Eng. Gas Turbine Power
,
140
(
4
), p.
042502
.
29.
Guo
,
Y.
, and
Keller
,
J.
,
2020
, “
Validation of Combined Analytical Methods to Predict Slip in Cylindrical Roller Bearings
,”
Tribol Int.
,
148
, p.
106347
.
30.
Boness
,
R. J.
,
1970
, “
The Effect of Oil Supply on Cage and Roller Motion in a Lubricated Roller Bearing
,”
J. Tribol.
,
92
(
1
), pp.
39
51
.
31.
Tassone
,
B. A.
,
1975
, “
Roller Bearing Slip and Skidding Damage
,”
J. Aircr.
,
12
(
4
), pp.
281
287
.
32.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part I: Cylindrical Roller Bearing Analysis
,”
ASME J. Lubr. Tech.
,
101
(
3
), pp.
293
302
.
33.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part II: Cylindrical Roller Bearing Results
,”
ASME J. Lubr. Tech.
,
101
(
3
), pp.
305
311
.
34.
Gupta
,
P. K.
,
1979
, “
Dynamics of Rolling-Element Bearings—Part IV: Ball Bearing Results
,”
ASME J. Lubr. Tech.
,
101
(
3
), pp.
319
326
.
35.
Harris
,
T. A.
,
1966
, “
An Analytical Method to Predict Skidding in High Speed Roller Bearings
,”
ASLE Trans.
,
9
(
3
), pp.
229
241
.
36.
Tung Liao
,
N.
, and
Lin
,
J. F.
,
2002
, “
Ball Bearing Skidding Under Radial and Axial Loads
,”
Mech. Mach. Theory
,
37
(
1
), pp.
91
113
.
37.
Tu
,
W.
,
Shao
,
Y.
, and
Mechefske
,
C. K.
,
2012
, “
An Analytical Model to Investigate Skidding in Rolling Element Bearings During Acceleration
,”
J. Mech. Sci. Technol.
,
26
(
8
), pp.
2451
2458
.
38.
Cocks
,
M.
, and
Tallian
,
T. E.
,
1971
, “
Sliding Contacts in Rolling Bearings
,”
ASLE Trans.
,
14
(
1
), pp.
32
40
.
39.
Rowe
,
F. D.
,
1971
, “
Diagnosis of Rolling Contact Bearing Damage
,”
Tribology
,
4
(
3
), pp.
137
146
.
40.
Evans
,
R. D.
,
Barr
,
T. A.
,
Houpert
,
L.
, and
Boyd
,
S. V.
,
2013
, “
Prevention of Smearing Damage in Cylindrical Roller Bearings
,”
Tribol. Trans.
,
56
(
5
), pp.
703
716
.
41.
Fowell
,
M.
,
Ioannides
,
S.
, and
Kadiric
,
A.
,
2014
, “
An Experimental Investigation Into the Onset of Smearing Damage in Nonconformal Contacts With Application to Roller Bearings
,”
Tribol. Trans.
,
57
(
3
), pp.
472
488
.
42.
Scherb
,
B. J.
, and
Zech
,
J.
,
2001
, “
A Study on the Smearing and Slip Behaviour of Radial Cylindrical Roller Bearings
,” Schriftenreihe der Georg-Simon-Ohm-Fachhochschule Nürnberg, (5).
43.
Scherb
,
B. J.
,
2001
, “
Anschmier- und Schlupfverhalten von Zylinderrollenlagern Teil II: Diskussion der Ergebnisse sowie deren Anwendungen
,”
Antriebstechnik
,
40
(
12
), pp.
35
38
.
44.
Scherb
,
B. J.
,
2001
, “
Anschmier- und Schlupfverhalten von Zylinderrollenlagern Teil I: Kinematisches Verhalten in Bezug auf den Schadenmechanismus der Anschmierungen
,”
Antriebstechnik
,
40
(
11
), pp.
55
58
.
45.
Bowman
,
W. F.
, and
Stachowiak
,
G. W.
,
1996
, “
A Review of Scuffing Models
,”
Tribol. Lett.
,
2
(
2
), pp.
113
131
.
46.
Cutiongco
,
E. C.
, and
Chung
,
Y. W.
,
1994
, “
Prediction of Scuffing Failure Based on Competitive Kinetics of Oxide Formation and Removal: Application to Lubricated Sliding of AISI 52100 Steel on Steel
,”
Tribol. Trans.
,
37
(
3
), pp.
622
628
.
47.
Bujoreanu
,
C.
,
Cretu
,
S.
, and
Nelias
,
D.
,
2003
,
Scuffing Behaviour in Angular Contact Ball Bearings
, 1st ed., Vol.
II
,
Annals of Dunarea de Jos University of Galati
,
România
, pp.
33
39
.
48.
Dyson
,
A.
,
1975
, “
Scuffing—A Review
,”
Tribol Int
,
8
(
2
), pp.
77
87
.
49.
Loos
,
J.
,
Blass
,
T.
,
Franke
,
J.
,
Kruhoeffer
,
W.
, and
Bergmann
,
I.
,
2016
, “
Influences on Generation of White Etching Crack Networks in Rolling Bearings
,”
J. Mech. Eng. Automat.
,
6
(
2
), pp.
85
94
.
50.
Gould
,
B.
, and
Greco
,
A.
,
2015
, “
The Influence of Sliding and Contact Severity on the Generation of White Etching Cracks
,”
Tribol. Lett.
,
60
(
2
), pp.
1
13
.
51.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
Boca Raton, FL
, pp.
1
728
.
52.
Wood
,
R. A. E.
,
1972
, “
Rolling Bearing Cages
,”
Tribology
,
5
(
1
), pp.
14
21
.
53.
Liu
,
Y.
,
Chen
,
Z.
,
Tang
,
L.
, and
Zhai
,
W.
,
2021
, “
Skidding Dynamic Performance of Rolling Bearing With Cage Flexibility Under Accelerating Conditions
,”
Mech. Syst. Signal Process.
,
150
, p.
107257
.
54.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2012
, “
A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods
,”
ASME J. Tribol.
,
134
(
4
), p.
041502
.
55.
Russell
,
T.
,
Sadeghi
,
F.
,
Peterson
,
W.
,
Aamer
,
S.
, and
Arya
,
U.
,
2021
, “
A Novel Test Rig for the Investigation of Ball Bearing Cage Friction
,”
Tribol. Trans.
,
64
(
5
), pp.
943
955
.
56.
Damiens
,
B.
,
Lubrecht
,
A. A.
, and
Cann
,
P. M.
,
2004
, “
Influence of Cage Clearance on Bearing Lubrication
,”
Tribol. Trans.
,
47
(
1
), pp.
2
6
.
57.
Schwarz
,
S.
,
Grillenberger
,
H.
,
Tremmel
,
S.
, and
Wartzack
,
S.
,
2021
, “
Investigations on the Rolling Bearing Cage Dynamics With Regard to Different Operating Conditions and Cage Properties
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1097
(
1
), p.
012009
.
58.
Ohta
,
H.
, and
Kanatsu
,
M.
,
2005
, “
Running Torque of Ball Bearings With Polymer Lubricant (Effect of the Enclosure Form of Polymer Lubricant)
,”
Tribol. Trans.
,
48
(
4
), pp.
484
491
.
59.
Wen
,
Y.
, and
Oshima
,
S.
,
2014
, “
Oil Flow Simulation Based on CFD for Reducing Agitation Torque of Ball Bearings
,”
SAE Int. J. Passeng. Cars—Mech. Syst.
,
7
(
4
), pp.
1385
1391
.
60.
Chen
,
S.
,
Chen
,
X.
,
Shuai
,
Q.
, and
Gu
,
J.
,
2020
, “
Effects of Cage Pocket Shapes on Dynamics of Angular Contact Ball Bearings
,”
Tribol. Online
,
15
(
5
), pp.
343
355
.
61.
Sathyan
,
K.
,
Gopinath
,
K.
,
Lee
,
S. H.
, and
Hsu
,
H. Y.
,
2012
, “
Bearing Retainer Designs and Retainer Instability Failures in Spacecraft Moving Mechanical Systems
,”
Tribol. Trans.
,
55
(
4
), pp.
503
511
.
You do not currently have access to this content.