Abstract

In the traditional elastohydrodynamic lubrication (EHL) field, surface elastic deformation is usually determined using an elastic half-space model for isotropic materials. However, this theory may be inefficient when applied to point contact problems involving inherently anisotropic materials, such as transversely isotropic (TI) materials. Accordingly, the present study proposes a method for solving the EHL point contact problem between a rigid ball and a TI substrate under impact loading using a direct-solving numerical method, in which the mechanical properties of the TI material are expressed in the form of a stiffness matrix. For comparison purposes, the TI material is also approximated as an isotropic material using Turner’s approximation method based on the equivalent modulus property of the material. It is found that the direct-solving method outperforms Turner’s approximation in interpreting the mechanical properties of the TI substrate. In addition, it is shown that the initial velocity of the rigid ball and the stiffness of the TI material (i.e., the transverse elastic modulus, longitudinal modulus, and shear modulus) have significant effects on the load, impact velocity, and acceleration of the ball; central pressure and film thickness of the lubricant; and deformation and von Mises stress of the TI substrate, during the impact process. Overall, the results show that the proposed EHL model provides a useful tool for solving impact-EHL problems involving TI materials.

References

1.
Dowson
,
D.
,
1995
, “
Elastohydrodynamic and Micro-Elastohydrodynamic Lubrication
,”
Wear
,
190
(
2
), pp.
125
138
.
2.
Habchi
,
W.
, and
Issa
,
J.
,
2017
, “
An Exact and General Model Order Reduction Technique for the Finite Element Solution of Elastohydrodynamic Lubrication Problems
,”
ASME J. Tribol.
,
139
(
5
), p.
051501
.
3.
Wang
,
X.
,
Liu
,
Y.
, and
Zhu
,
D.
,
2017
, “
Numerical Solution of Mixed Thermal Elastohydrodynamic Lubrication in Point Contacts With Three-Dimensional Surface Roughness
,”
ASME J. Tribol.
,
139
(
1
), p.
011501
.
4.
Wang
,
Z.
, and
Zhang
,
Y.
,
2019
, “
An Efficient Numerical Model of Elastohydrodynamic Lubrication for Transversely Isotropic Materials
,”
ASME J. Tribol.
,
141
(
9
), p.
091501
.
5.
Jolkin
,
A.
, and
Larsson
,
R.
,
2000
, “Determination of Lubricant Compressibility in EHL Conjunctions Using the Hybrid Technique,”
Tribology Series, vol. 38
,
Elsevier
,
New York
, pp.
589
596
.
6.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), p.
021501
.
7.
Bai
,
X.
,
Dong
,
Q.
,
Zheng
,
H.
, and
Zhou
,
K.
,
2022
, “
Plasto-Elastohydrodynamic Lubrication of Heterogeneous Materials in Impact Motion
,”
Int. J. Mech. Sci.
,
236
(
1
), p.
107762
.
8.
Lovell
,
M.
,
1998
, “
Analysis of Contact Between Transversely Isotropic Coated Surfaces: Development of Stress and Displacement Relationships Using FEM
,”
Wear
,
214
(
2
), pp.
165
174
.
9.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
,
V. C.
,
1992
, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
,
25
(
9
), pp.
1027
1045
.
10.
Murphy
,
J.
,
2013
, “
Transversely Isotropic Biological, Soft Tissue Must be Modelled Using Both Anisotropic Invariants
,”
Eur. J. Mech.-A/Solids
,
42
(
1
), pp.
90
96
.
11.
Tien
,
Y. M.
,
Kuo
,
M. C.
, and
Juang
,
C. H.
,
2006
, “
An Experimental Investigation of the Failure Mechanism of Simulated Transversely Isotropic Rocks
,”
Int. J. Rock Mech. Mining Sci.
,
43
(
8
), pp.
1163
1181
.
12.
Togashi
,
Y.
,
Kikumoto
,
M.
, and
Tani
,
K.
,
2017
, “
An Experimental Method to Determine the Elastic Properties of Transversely Isotropic Rocks by a Single Triaxial Test
,”
Rock Mech. Rock Eng.
,
50
(
1
), pp.
1
15
.
13.
Liu
,
M.
, and
Yang
,
F.
,
2012
, “
Finite Element Simulation of the Effect of Electric Boundary Conditions on the Spherical Indentation of Transversely Isotropic Piezoelectric Films
,”
Smart Mater. Struct.
,
21
(
10
), p.
105020
.
14.
Hansen
,
J.
,
Björling
,
M.
, and
Larsson
,
R.
,
2021
, “
A New Film Parameter for Rough Surface EHL Contacts With Anisotropic and Isotropic Structures
,”
Tribol. Lett.
,
69
(
2
), p.
37
.
15.
Staab
,
G.
,
2015
,
Laminar Composites
,
Butterworth-Heinemann
,
Oxford, UK
.
16.
Vijay
,
A.
, and
Sadeghi
,
F.
,
2022
, “
Rolling Contact Fatigue of Coupled EHL and Anisotropic Polycrystalline Materials
,”
Tribol. Int.
,
169
, p.
107479
.
17.
Dowson
,
D.
, and
Wang
,
D.
,
1994
, “
An Analysis of the Normal Bouncing of a Solid Elastic Ball on an Oily Plate
,”
Wear
,
179
(
1–2
), pp.
29
37
.
18.
Dowson
,
D.
, and
Wang
,
D.
,
1995
, “Impact Elastohydrodynamics,”
Tribology Series, vol. 30
,
Elsevier
,
New York
, pp.
565
582
.
19.
Larsson
,
R.
, and
Hö glund
,
E.
,
1994
, “
Elastohydrodynamic Lubrication at Impact Loading
,”
ASME J. Tribol.
,
116
(
4
), pp.
770
776
.
20.
Chu
,
H.-M.
,
Li
,
W.-L.
,
Chang
,
Y.-P.
, and
Huang
,
H.-C.
,
2008
, “
Effects of Couple Stress on Elastohydrodynamic Lubrication at Impact Loading
,”
ASME J. Tribol.
,
130
(
1
), p.
011010
.
21.
Chu
,
H.-M.
,
Chen
,
J.-L.
,
Hsu
,
H.-C.
, and
Li
,
W.-L.
,
2008
, “
Elastohydrodynamic Lubrication of Circular Contacts at Impact Loading With Generalized Newtonian Lubricants
,”
Tribol. Lett.
,
29
(
1
), pp.
1
9
.
22.
Turner
,
J.
,
1980
, “
Contact on a Transversely Isotropic Half-Space, or Between Two Transversely Isotropic Bodies
,”
Int. J. Solids Struct.
,
16
(
5
), pp.
409
419
.
23.
Swanson
,
S. R.
,
2005
, “
Contact Deformation and Stress in Orthotropic Plates
,”
Compos. Part A: Appl. Sci. Manuf.
,
36
(
10
), pp.
1421
1429
.
24.
Majeed
,
M. A.
,
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
2012
, “
Elastoplastic Contact/Impact of Rigidly Supported Composites
,”
Compos. Part B: Eng.
,
43
(
3
), pp.
1244
1251
.
25.
Chu
,
L.-M.
,
Chen
,
C.-Y.
,
Tee
,
C.-K.
,
Chen
,
Q.-D.
, and
Li
,
W.-L.
,
2014
, “
Elastohydrodynamic Lubrication Analysis for Transversely Isotropic Coating Layer
,”
ASME J. Tribol.
,
136
(
3
), p.
031502
.
26.
Yang
,
P.
, and
Wen
,
S.
,
1991
, “
Pure Squeeze Action in an Isothermal Elastohydrodynamically Lubricated Spherical Conjunction Part 1. Theory and Dynamic Load Results
,”
Wear
,
142
(
1
), pp.
1
16
.
27.
Chu
,
H.-M.
,
Li
,
W.-L.
, and
Chen
,
M.-D.
,
2006
, “
Elastohydrodynamic Lubrication of Circular Contacts at Pure Squeeze Motion With Non-Newtonian Lubricants
,”
Tribol. Int.
,
39
(
9
), pp.
897
905
.
28.
Chu
,
L.-M.
,
Yu
,
C.-C.
,
Chen
,
Q.-D.
, and
Li
,
W.-L.
,
2015
, “
Elastohydrodynamic Lubrication Analysis of Pure Squeeze Motion on an Elastic Coating/Elastic Substrate System
,”
ASME J. Tribol.
,
137
(
1
), p.
011503
.
29.
Swanson
,
S. R.
,
2004
, “
Hertzian Contact of Orthotropic Materials
,”
Int. J. Solids Struct.
,
41
(
7
), pp.
1945
1959
.
30.
Chen
,
C.-Y.
,
Tseng
,
Y.-F.
,
Chu
,
L.-M.
, and
Li
,
W.-L.
,
2013
, “
Soft EHL for Transversely Isotropic Materials
,”
Tribol. Int.
,
67
(
1
), pp.
240
253
.
31.
Ding
,
H.
,
Chen
,
W.
, and
Zhang
,
L.
,
2006
,
Elasticity of Transversely Isotropic Materials
,
Springer Science & Business Media
,
The Netherlands
.
32.
Li
,
L.
, and
Hao
,
C. T.
,
2011
, “
Constraints on Anisotropic Parameters in Transversely Isotropic Media and the Extensions to Orthorhombic Media
,”
Chin. J. Geophys.
,
54
(
6
), pp.
798
809
.
33.
Chen
,
Q.-D.
, and
Li
,
W.-L.
,
2019
, “
Soft-Elastohydrodynamic Lubrication Line Contact Analysis on a Strip of Bio-Materials
,”
ASME J. Tribol.
,
141
(
11
), p.
111501
.
34.
Roelands
,
C.
,
Vlugter
,
J.
, and
Waterman
,
H.
,
1963
, “
The Viscosity-Temperature-Pressure Relationship of Lubricating Oils and Its Correlation With Chemical Constitution
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
601
607
.
35.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon
,
New York
.
36.
Srinivasa-Murthy
,
C.
,
Wang
,
D.
,
Beaudoin
,
S. P.
,
Bibby
,
T.
,
Holland
,
K.
, and
Cale
,
T. S.
,
1997
, “
Stress Distribution in Chemical Mechanical Polishing
,”
Thin Solid Films
,
308
(
1
), pp.
533
537
.
37.
Chen
,
Q.-D.
,
Jao
,
H.-C.
,
Chu
,
L.-M.
, and
Li
,
W.-L.
,
2016
, “
Effects of Anisotropic Slip on the Elastohydrodynamic Lubrication of Circular Contacts
,”
ASME J. Tribol.
,
138
(
3
), p.
031502
.
38.
Maier
,
E.
,
Lengmüller
,
M.
, and
Lohner
,
T.
,
2022
, “
Effect of Transversely Isotropic Elasticity on Elastohydrodynamic Lubrication of Point Contacts
,”
Polymers
,
14
(
17
), p.
3507
.
You do not currently have access to this content.